Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T00:46:37.863Z Has data issue: false hasContentIssue false

Field astrobiology research in Moon–Mars analogue environments: instruments and methods

Published online by Cambridge University Press:  14 March 2011

B.H. Foing*
Affiliation:
ESA ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands International Lunar Exploration Working Group (ILEWG), c/o BH Foing, ESTEC PO Box 299, 2200 AG Noordwijk, The Netherlands
C. Stoker
Affiliation:
Space Science Division, M.S. 245-3, NASA Ames Research Center, Moffett Field, CA 94035, USA
J. Zavaleta
Affiliation:
Space Science Division, M.S. 245-3, NASA Ames Research Center, Moffett Field, CA 94035, USA
P. Ehrenfreund
Affiliation:
Leiden Institute of Chemistry, Einsteinweg 55, PO Box 9502, 2300 Leiden, The Netherlands Space Policy Institute, Elliott School of International Affairs, Washington, DC, USA
C. Thiel
Affiliation:
International Lunar Exploration Working Group (ILEWG), c/o BH Foing, ESTEC PO Box 299, 2200 AG Noordwijk, The Netherlands Institute of Medical Physics and Biophysics, CeNTech, University of Münster, Heisenbergstrasse 11, D-48149 Muenster, Germany
P. Sarrazin
Affiliation:
inXitu Inc., 2551 Casey Ave, Ste A, Mountain View, CA 94043, USA
D. Blake
Affiliation:
Space Science Division, M.S. 245-3, NASA Ames Research Center, Moffett Field, CA 94035, USA
J. Page
Affiliation:
ESA ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands
V. Pletser
Affiliation:
ESA ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands
J. Hendrikse
Affiliation:
ESA ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands
S. Direito
Affiliation:
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
J.M. Kotler
Affiliation:
Leiden Institute of Chemistry, Einsteinweg 55, PO Box 9502, 2300 Leiden, The Netherlands
Z. Martins
Affiliation:
Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
G. Orzechowska
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
C. Gross
Affiliation:
Institute of Geological Sciences, Planetary Sciences and Remote Sensing, Freie Universitaet Berlin, D-12249 Berlin, Germany
L. Wendt
Affiliation:
Institute of Geological Sciences, Planetary Sciences and Remote Sensing, Freie Universitaet Berlin, D-12249 Berlin, Germany
J. Clarke
Affiliation:
Mars Society Australia, c/o 43 Michell St, Monash, ACT 2904, Australia Australian Centre for Astrobiology, Ground Floor, Biological Sciences Building, Sydney, NSW, Australia
A.M. Borst
Affiliation:
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands International Lunar Exploration Working Group (ILEWG), c/o BH Foing, ESTEC PO Box 299, 2200 AG Noordwijk, The Netherlands
S.T.M. Peters
Affiliation:
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
M.-B. Wilhelm
Affiliation:
Space Science Division, M.S. 245-3, NASA Ames Research Center, Moffett Field, CA 94035, USA
G.R. Davies
Affiliation:
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

Abstract

We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discuss the entire experimental approach from determining the geological context using remote sensing, in situ measurements, sorties with sample collection and characterization, analysis in the field laboratory, to the post sample analysis using advanced laboratory facilities.

We present the rationale for terrestrial field campaigns to strengthen astrobiology research and the link between in situ and orbital remote sensing data. These campaigns are supporting the preparation for future missions such as Mars Science Laboratory, ExoMars or Mars Sample Return. We describe the EuroGeoMars 2009 campaign conducted by MDRS crew 76 and 77, focused on the investigation of surface processes in their geological context. Special emphasis was placed on sample collection and pre-screening using in-situ portable instruments. Science investigations included geological and geochemical measurements as well as detection and diagnostic of water, oxidants, organic matter, minerals, volatiles and biota.

EuroGeoMars 2009 was an example of a Moon–Mars field research campaign dedicated to the demonstration of astrobiology instruments and a specific methodology of comprehensive measurements from selected sampling sites. We discuss in sequence: the campaign objectives and trade-off based on science, technical or operational constraints. This includes remote sensing data and maps, and geological context; the monitoring of environmental parameters; the geophysical context and mineralogy studies; geology and geomorphology investigations; geochemistry characterization and subsurface studies.

We describe sample handling (extraction and collection) methods, and the sample analysis of soils and rocks performed in the MDRS laboratory using close inspection, initial petrological characterization, microscopy, Visible-NIR spectrometry, Raman spectrometry, X-ray diffraction/X-ray fluorescence spectrometry, soil analysis, electrochemical and biological measurements.

The results from post-mission analysis of returned samples using advanced facilities in collaborator institutes are described in companion papers in this issue. We present examples of in-situ analysis, and describe an example investigation on the exploration and analysis of endolithic microbial mats (from reconnaissance, in-situ imaging, sampling, local analysis to post-mission sample analysis).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Battler, M.M., Clarke, J.D.A. & Coniglio, M. (2006). Possible analog sedimentary and diagenetic features for Meridiani Planum sediments near Hanksville, Utah: implications for Martian Field studies. In Mars Analog Research, ed. Clarke, J.D.A., pp. 5570. American Astronautical Society Science and Technology Series 111.Google Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., Gondet, B., Poulet, F., Berthé, M., Soufflot, A., Arvidson, R., Mangold, N., Mustard, J. & Drossart, P. (2005). Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations. Science 307(5715), 15761581.CrossRefGoogle ScholarPubMed
Bibring, J.P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P. & Forget, F. (2006). Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312(5772), 400404.CrossRefGoogle ScholarPubMed
Blake, D.F., Sarrazin, P., Bish, D.L., Chipera, S.J., Vaniman, D.T., Collins, S., Elliott, S.T. & Yen, A.S. (2007). Progress in the development of CheMin: a definitive mineralogy instrument on the Mars science laboratory (MSL’09) Rover. LPI Contribution No. 1338, p. 1257.Google Scholar
Borst, A., Peters, S., Foing, B.H., Stoker, C., Wendt, L., Gross, C., Zavaleta, J., Sarrazin, P., Blake, D., Ehrenfreund, P. et al. (2010). Geochemical results from EuroGeoMars MDRS Utah 2009 campaign. LPI Contribution No. 41, p. 2744.Google Scholar
Chin, G., Brylow, S., Foote, M., Garvin, J., Kasper, J., Keller, J., Litvak, M., Mitrofanov, I., Paige, D., Raney, K., Robinson, M., Sanin, A., Smith, D., Spence, H., Spudis, P., Stern, S.A. & Zuber, M. (2007). Lunar reconnaissance orbiter overview: The Instrument Suite and Mission. Space Sci. Rev. 129(4), 391419.Google Scholar
Christensen, P.R., Bandfield, J.L., Hamilton, V.E., Ruff, S.W., Kieffer, H.H., Titus, T.N., Malin, M.C., Morris, R.V., Lane, M.D., Clark, R.L.et al. (2001). Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results. J. Geophys. Res. 106(E10), 2382323872.CrossRefGoogle Scholar
Clarke, J.D.A. & Pain, C.F. (2004). From Utah to Mars: regolith-landform mapping and its application. In Mars Expedition Planning, ed. Cockell, C.C., pp. 131160. American Astronautical Society Science and Technology Series 107.Google Scholar
Clarke, J.D.A. & Stoker, C.R. (2011). Concretions in inverted and exhumed channels near Hanksville Utah: implications for Mars. Int. J. Astrobiol. (in press).Google Scholar
Cockell, C.S., Schuerger, A.C., Billi, D., Friedmann, E.I. & Panitz, C. (2005). Effects of a simulated Martian UV flux on the cyanobacterium, Chroococcidiopsis sp 029. Astrobiology 5(2), 127140.Google Scholar
COSPAR Planetary Exploration Committee (PEX) Report, Ehrenfreund, P. et al. (2010). http://cosparhq.cnes.fr/PEX_Report2010_June22a.pdfGoogle Scholar
de Crombrugghe, G., Le Maire, V., Denies, J., Jago, A., Van Vynckt, D., Reydams, M., Mertens, A., de Lobkowicz, Y. et al. in preparation.Google Scholar
de Vera, J.P.P., Leya, T., Lorek, A., Koncz, A., de La Torre Noetzel, R., Kozyrovska, N., Burlak, O. & Foing, B. (2010). Photosynthesis and its implications for space research, astrobiology science conference 2010: evolution and life: surviving catastrophes and extremes on earth and beyond, LPI No. 1538, p. 5139.Google Scholar
Direito, S., Foing, B.H., Mahapatra, P., Gomez, F. & Rull, F. (2010). Sample collection and analysis from CAREX Field Workshop at Rio Tinto. LPI Contribution No. 1538, p. 5648.Google Scholar
Direito, S.O.L., Ehrenfreund, P., Marees, A., Staats, M., Foing, B. & Röling, W.F.M. (2011). A wide variety of putative extremophiles and large beta-diversity at the Mars desert research station (Utah). Int. J. Astrobiol. (in press).CrossRefGoogle Scholar
Ehrenfreund, P., Foing, B.H., Stoker, C., Zavaleta, J., Quinn, R., Blake, D., Martins, Z., Sephton, M., Becker, L., Orzechowska, G. et al. (2010). EuroGeoMars field campaign: sample analysis of organic matter and minerals. LPI Contribution No. 41, p. 1723.Google Scholar
Ehrenfreund, P., Röling, W., Thiel, C., Quinn, R., Septhon, M., Stoker, C., Direito, S., Kotler, M., Martins, Z., Orzechowska, G.E., Kidd, R. & Foing, B.H. (2011). Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. Int. J. Astrobiol. (in press).Google Scholar
Feldman, W.C., Maurice, S., Lawrence, D.J., Little, R.C., Lawson, S.L., Gasnault, O., Wiens, R.C., Barraclough, B.L., Elphic, R.C., Prettyman, T.H. et al. (2001). Evidence for water ice near the lunar poles. J. Geophys. Res. 106(E10), 2323123252.CrossRefGoogle Scholar
Foing, B.H. (2008). Reports to COSPAR from the International Lunar Exploration Working Group (ILEWG). Adv. Space. Res. 42, 238.CrossRefGoogle Scholar
Foing, B.H., Racca, G.D., Marini, A., Evrard, E., Stagnaro, L., Almeida, M., Koschny, D., Frew, D., Zender, J., Heather, J., Grande, M., Huovelin, J., Keller, H.U., Nathues, A., Josset, J.L., Malkki, A., Schmidt, W., Noci, G., Birkl, R., Iess, L., Sodnik, Z. & McManamon, P. (2006). SMART-1 mission to the Moon: status, first results and goals. Adv. Res. 37(1), 613.Google Scholar
Foing, B.H., Racca, G.D., Josset, J.L., Koschny, D., Frew, D., Almeida, M., Zender, J., Heather, D., Peters, S., Marini, A., Stagnaro, L., Beauvivre, S., Grande, M., Kellett, B., Huovelin, J., Nathues, A., Mall, U., Ehrenfreund, P. & McCannon, P. (2008) SMART-1 highlights and relevant studies on early bombardment and geological processes on rocky planets. Phy. Scr. 130, 014026.Google Scholar
Foing, B.H., Richards, R., Sallaberger, C. & ICEUM7 Participants (2008b). Toronto Lunar Declaration 2005. Adv. Space Res. 42, 242.CrossRefGoogle Scholar
Foing, B.H., Wu, J. & ICEUM8 Participants (2008c). Beijing lunar declaration 2006. Adv. Space Res. 42, 244.Google Scholar
Foing, B.H., Bhandari, N., Goswami, J.N. & ICEUM6 Participants (2008d). Udaipur Lunar Declaration 2004. Adv. Space Res. 42, 240.Google Scholar
Foing, B.H., Espinasse, S., Wargo, M., di Pippo, S. & ICEUM9 Participants (2008e). Sorrento lunar declaration 2007. Adv. Space Res. 42, 246.Google Scholar
Foing, B.H., Batenburg, P., Drijkoningen, G., Slob, E., Poulakis, P., Visentin, G., Page, J., Noroozi, A., Gill, E., Guglielmi, M. et al. (2009). ExoGeoLab Lander/rover instruments and EuroGeoMars MDRS campaign. LPI Contribution No. 40, p. 2567.Google Scholar
Foing, B.H., Barton, A., Blom, J.K., Mahapatra, P., Som, S., Jantscher, B., Page, J., Zegers, T., Stoker, C., Zavaleta, J. et al. (2010a). ExoGeoLab Lander, rovers and instruments: tests at ESTEC and Eifel volcanic field. LPI Contribution No. 41, p. 1701.Google Scholar
Foing, B.H., Boche-Sauvan, L., Stoker, C., Ehrenfreund, P., Wendt, L., Gross, C., Thiel, C., Peters, S., Borst, A., Zhavaleta, J. et al. (2010b). ExoHab and EuroGeoMars campaigns: human exploration and astrobiology. LPI Contribution No. 1538, p. 5625.Google Scholar
Foing, B.H., Mahapatra, P., Boche-Sauvan, L., Som, S., Page, J., Stoker, C., Zhavaleta, J., Sarrazin, P., Blake, D., Poulakis, P. et al. (2010c). ExoGeoLab test bench for landers, rovers and astrobiology. LPI Contribution No. 1538, p. 5477.Google Scholar
Foing, B.H., Stoker, C., Zhavaleta, J., Ehrenfreund, P., Quinn, R., Blake, D., Martins, Z., Sephton, M., Becker, L., Orzechowska, G. et al. (2010d). Eurogeomars field campaign: sample analysis of organic matter and minerals. LPI Contribution No. 1538, p. 5656.Google Scholar
Gendrin, A., Mangold, N., Bibring, J.-P., Langevin, Y., Gondet, B., Poulet, F., Bonello, G., Quantin, C., Mustard, J., Arvidson, R. & Le Mouélic, S. (2005). Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View. Science 307(5715), 15871591.Google Scholar
Godfrey, A.E., Everitt, B.L., & Duque, J.F.M. (2008). Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA. Geomorphology 102, 242251.Google Scholar
Gómez, F., Mateo-Martí, E., Prieto-Ballesteros, O., Martín-Gago, J. & Amils, R. (2010). Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions. Icarus 209, 482.Google Scholar
Gómez, F., Walter, N., Amils, R., Rull, F., Klingelhöfer, A.K., Kviderova, J., Sarrazin, P., Foing, B., Behar, A., Fleischer, I., Parro, V., Garcia-Villadangos, M., Blake, D., Martin Ramos, J.D., Direito, S., Mahapatra, P., Stam, C., Venkateswaran, K. & Voytek, M. (2011). Multidisciplinary integrated field campaign to an acidic Martian Earth Analogue with astrobiological interest: Rio Tinto. Int. J. Astrobiol. (in press).Google Scholar
Goswami, J.N. (2010). An Overview of the Chandrayaan-1 Mission, LPI Contribution No. 1533, p 1591.Google Scholar
Greeley, R., Foing, B.H., McSween, H.Y., Neukum, G., Pinet, P., van Kan, M., Werner, S.C., Williams, D.A. & Zegers, T.E. (2005). Fluid lava flows in Gusev crater, Mars. J. Geophys. Res. 110(E5), E05008.Google Scholar
Groemer, G., Stumptner, W., Foing, B., Blom, J.K., Perrin, A., Mikolajczak, M., Chevrier, S., Direito, S., Olmedo-Soler, A., Zegers, T.E. et al. (2010). ILEWG Eifel 2009 campaign: astronaut extravehicular surface/subsurface activities and human aspects. LPI Contribution No. 41, p. 1680.Google Scholar
Gross, C., Wendt, L., McGuire, P.C., Bonnici, A., Foing, B.H., Souza-Egipsy, V., Bose, R., Walter, S., Ormö, J., Díaz-Martínez, E. et al. (2010). The cyborg astrobiologist: testing a novelty detection algorithm at the Mars desert research station (MDRS), Utah. LPI Contribution No. 41, p. 2457.Google Scholar
Haruyama, J., Matsunaga, T., Ohtake, M., Morota, T., Honda, C., Yokota, Y., Torii, M., Ogawa, Y. & The Lism Working Group (2008). Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE. Earth. Planets Space 60, 243255.CrossRefGoogle Scholar
Haruyama, J., Ohtake, M., Matsunaga, T., Morota, T., Honda, C., Yokota, Y., Abe, M., Ogawa, Y., Miyamoto, H., Iwasaki, A. et al. (2009). Long-lived volcanism on the lunar farside revealed by SELENE terrain camera. Science 323(5916), 905.CrossRefGoogle ScholarPubMed
Head, J.W., Neukum, G., Jaumann, R., Hiesinger, H., Hauber, E., Carr, M., Masson, P., Foing, B., Hoffmann, H., Kreslavsky, M. et al. (2005a). Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434(7031), 346.Google Scholar
Head, J.W., Neukum, G., Jaumann, R., Hiesinger, H., Hauber, E., Carr, M., Masson, P., Foing, B., Hoffmann, H., Kreslavsky, M. et al. (2005b). Planetary science: are there active glaciers on Mars? Nature 438(7069), 10.CrossRefGoogle Scholar
Hendrikse, J., Foing, B.H., Monaghan, E., Stoker, C., Zavaleta, J., Selch, F., Ehrenfreund, P., Wendt, L., Gross, C., Thiel, C. et al. (2010). Highlights from remote controlled rover for EuroGeoMars MDRS campaign. LPI Contribution No. 41, p. 2435.Google Scholar
ICEUM9 (sci.esa.int/iceum9) and Sorrento Lunar Declaration (2007). http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=41506Google Scholar
ICEUM10 (sci.esa.int/iceum10) and Cape Canaveral Lunar Declaration (2008). http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=43654Google Scholar
ILEWG Reports and ICEUM Declarations 2006–2010 (http://sci.esa.int/ilewg)Google Scholar
Jolliff, B.L., Gillis, J.J., Haskin, L.A., Korotev, R.L. & Wieczorek, M.A. (2000). Major lunar crustal terranes: surface expressions and crust-mantle origins. JGR105 4197J.Google Scholar
Kato, M., Sasaki, S., Tanaka, K., Iijima, Y. & Takizawa, Y. (2008). The Japanese lunar mission SELENE: science goals and present status. Adv. Space Res. 42(2), 294300.Google Scholar
Kim, S.S., Carnes, S., Haldemann, A., Ulmer, C., Ng, E. & Arcone, S. (2005). Miniature ground penetrating radar, CRUX GPR, IEEEAC paper #1365.Google Scholar
Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Ming, D.W., Renz, F., Wdowiak, T., Squyres, S.W. & Arvidson, R.E. (2004). Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer. Sci. 306(5702) 17401745.Google Scholar
Kotler, M., Quinn, R., Martins, Z., Foing, B. & Ehrenfreund, P. (2011). Analysis of Mineral Matrices of planetary soils analogs from the Utah Desert. Int. J. Astrobiol. (in press).CrossRefGoogle Scholar
Lucey, P.G., Blewett, D.T. & Hawke, B. (1998). Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J. Geophys. Res. 103, 3679L.Google Scholar
Martins, Z., Sephton, M.A., Foing, B.H. & Ehrenfreund, P. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. Int. J. Astrobiol. (in press).CrossRefGoogle Scholar
McGuire, P.C., Gross, C., Wendt, L., Bonnici, A., Souza-Egipsy, V., Ormö, J., Díaz-Martínez, E., Foing, B.H., Bose, R., Walter, S. et al. (2010). The cyborg astrobiologist: testing a novelty detection algorithm on two mobile exploration systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah. Int. J. Astrobiol. 9, 11.CrossRefGoogle Scholar
McKay, C.P. & Stoker, C.R. (1989). The early environment and its evolution on Mars: implications for life. Rev. Geophys. 27, 189214.Google Scholar
Murray, J.B., Muller, J.-P., Neukum, G., Werner, S.C., van Gasselt, S., Hauber, E., Markiewicz, W.J., Head, J.W., Foing, B.H., Page, D. et al. (2005). Evidence from the Mars express high resolution stereo camera for a frozen sea close to Mars’ equator. Nature 434, 352.Google Scholar
Neukum, G., Jaumann, R., Hoffmann, H., Hauber, E., Head, J.W., Basilevsky, A.T., Ivanov, B.A., Werner, S.C., van Gasselt, S., Murray, J.B., McCord, T., HRSC Co-Investigator Team (2004). Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature 432(7020), 971979.Google Scholar
Ono, T., Kumamoto, A., Nakagawa, H., Yamaguchi, Y., Oshigami, S., Yamaji, A., Kobayashi, T., Kasahara, Y., Oya, H. (2009). Lunar radar sounder observations of subsurface layers under the nearside Maria of the Moon. Science 323(5916), 909.Google Scholar
Orzechowska, G.E., Kidd, R., Foing, B.H., Kanik, I., Stoker, C. & Ehrenfreund, P. (2011). Analysis of mars analog soil samples using solid phase microextraction, organic solvent extraction and Gas Chromatography/Mass Spectrometry. Int. J. Astrobiol. (in press).CrossRefGoogle Scholar
Parker, M., Zegers, T., Kneissl, T., Ivanov, B., Foing, B. & Neukum, G. (2010). 3D structure of the Gusev Crater region. Earth Planet. Sci. Lett. 294, 411.Google Scholar
Pieters, C.M., Goswami, J.N., Clark, R.N., Annadurai, M., Boardman, J., Buratti, B., Combe, J.-P., Dyar, M.D., Green, R., Head, J.W. et al. (2009). Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326, 568.CrossRefGoogle ScholarPubMed
Plester, V. & Foing, B. (2011). European contribution to human aspect investigations for future planetary habitat definition studies: field tests at MDRS on crew time utilisation and habitat interfaces. Micrograv. Sci. Technol. 23(2), 199.Google Scholar
Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B. & Gomez, C. (2004). Phyllosilicates on Mars and implications for early martian climate. Nature 438(7068), 623627.CrossRefGoogle Scholar
Som, S.M., Foing, B.H. & Exogeolab Team. (2010). Testing portable Raman spectrometry for astrobiology. LPI Contribution No. 1538, p. 5085.Google Scholar
Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., Bell, J.F., Calvin, W., Christensen, P.R., Clark, B.C., Crisp, J.A., Farrand, W.H., Herkenhoff, K.E., Johnson, J.R., Klingelhöfer, G., Knoll, A.H., McLennan, S.M., McSween, H.Y., Morris, R.V., Rice, J.W., Rieder, R. & Soderblom, L.A. (2004). In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars. Science 306(5702), 17091714.Google Scholar
Stoker, C., Clarke, J., Direito, S., Blake, D., Martin, K., Zavaleta, J. & Foing, B.H. (2011). Mineralogical, chemical, organic and microbial properties of subsurface soil cores from mars desert research station, a phyllosilicate and sulfate mars analog site for MSL. Int. J. Astrobiol. (in press).Google Scholar
Stoker, C., Foing, B., Zavaleta, J. & Clark, J. (2009). Drilling on the Moon and Mars: human exploration simulation experiments. EPSC Abstr. 4, EPSC2009-659.Google Scholar
Stoker, C.R., Zavaleta, J., Bell, M., Direto, S., Foing, B., Blake, D. & Kim, S. (2010). Drilling on the Moon and Mars: developing the science approach for subsurface exploration with human crews. LPI Contribution No. 41, p. 2697.Google Scholar
Thiel, C., Ehrenfreund, P., Foing, B., Pletser, V. & Ullrich, O. (2011). PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. Int. J. Astrobiol. (in press).Google Scholar
Thiel, C., Wills, D. & Foing, B.H. (2009). PCR-based detection of microbial communities during the EuroGeoMars MDRS campaign. EPSC Abstr. 4, EPSC2009-660.Google Scholar
Vondrak, R., Keller, J., Chin, G. & Garvin, J. (2010). Lunar Reconnaissance Orbiter (LRO): Observations for lunar exploration and science. Space Sci. Rev. 150(1–4), 722.Google Scholar
Wendt, L., Mahapatra, P., Gross, C., Borst, A., Foing, B.H. & Exogeolab Team, Eurogeomars Team. (2009). Raman investigations of the EuroGeoMars Campaign. EPSC Abstr. 4, EPSC2009-457.Google Scholar