Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T23:12:40.917Z Has data issue: false hasContentIssue false

Effects of atmospheric pressure on the survival of photosynthetic microorganisms during simulations of ecopoesis

Published online by Cambridge University Press:  21 October 2008

David J. Thomas
Affiliation:
Science Division, Lyon College, 2300 Highland Road, Batesville, AR 72501, USAe-mail: [email protected]
L. Michelle Eubanks
Affiliation:
Science Division, Lyon College, 2300 Highland Road, Batesville, AR 72501, USAe-mail: [email protected]
Carl Rector
Affiliation:
Science Division, Lyon College, 2300 Highland Road, Batesville, AR 72501, USAe-mail: [email protected]
Jaime Warrington
Affiliation:
Science Division, Lyon College, 2300 Highland Road, Batesville, AR 72501, USAe-mail: [email protected]
Paul Todd
Affiliation:
Techshot, Inc., 7200 Highway 150, Greenville, IN 47124, USA

Abstract

Three cyanobacteria (Anabaena sp., Plectonema boryanum and Chroococcidiopsis CCMEE171) and an alga (Chlorella ellipsoidea) were grown under simulated martian ecopoesis conditions. A xenon arc lamp with a solar filter provided simulated martian sunlight, and temperature cycled diurnally from −80°C to 26°C. A Mars-like atmosphere of 100% CO2 was provided at 50, 100, 300, 500 and 1000 mbar. The cyanobacteria and alga were inoculated into JSC Mars-1 soil simulant and exposed to each atmospheric pressure for five weeks. Survival and growth were determined via extractable chlorophyll a and total esterase (fluorescein diacetate hydrolysis) activity. Maximum survival occurred at 100 and 300 mbar. At 50, 500 and 1000 mbar, esterase activity was near zero, and extractable chlorophyll a was less than 10% of control samples. Overall, the cyanobacteria survived better than the alga. Low survival at 50 mbar was probably due to desiccation. Low survival at 500 and 1000 mbar may have been due to CO2 toxicity.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, G. & Duncan, H. (2001). Soil Biol. Biochem. 33, 943951.Google Scholar
Allen, C.C., Jager, K.M., Morris, R.V., Lindstrom, D.J., Lindstrom, M.M. & Lockwood, J.P. (1998). Space 98, ed. Galloway, R.G. & Lokaj, S., pp. 469476. American Society of Civil Engineers, Reston, Virginia.CrossRefGoogle Scholar
Averner, M.M. & Macelroy, R.D. (1976). NASA Center for Aerospace Information (CASI), p. 122.Google Scholar
Bowles, N.D., Paerl, H.W. & Tucker, J. (1985). Can. J. Fish. Aquat. Sci. 42, 11271131.CrossRefGoogle Scholar
Carr, M.H. (1996). Water on Mars. Oxford University Press, Oxford, pp. vii, 229.CrossRefGoogle Scholar
Cockell, C.S., Schuerger, A.C., Billi, D., Friedmann, E.I. & Panitz, C. (2005). Astrobiology 5(2), 127140.Google Scholar
Graham, J.M. (2004). Astrobiology 4(2), 168195.Google Scholar
Hart, S.D., Currier, P.A. & Thomas, D.J. (2000). J. Brit. Interplanet. Soc. 53(9/10), 357359.Google Scholar
Haynes, R.H. & McKay, C.P. (1992). Adv. Space Res. 12(4), 133140.CrossRefGoogle Scholar
McKay, C.P. (1982). J. Brit. Interplanet. Soc. 35, 427433.Google Scholar
McKay, C.P. (1998). Grav. Space. Biol. Bull. 11(2), 4150.Google Scholar
McKay, C.P. (1999). The future of space exploration. Scientific American 10, 5257.Google Scholar
McKay, C.P., Toon, O.B. & Kasting, J.F. (1991). Nature 352, 489496.Google Scholar
Myers, J., Graham, J.-R. & Wang, R.T. (1980). Plant Physiol. 66, 11441149.CrossRefGoogle Scholar
Schnürer, J. & Rosswall, T. (1982). Appl. Env. Microbiol. 43(6), 12561261.CrossRefGoogle Scholar
Schuerger, A.C., Berry, B. & Nicholson, W.L. (2006a). 37th Lunar and Planetary Science Conference (League City, Texas), Lunar and Planetary Institute, Houston, Texas, p. 1397.Google Scholar
Schuerger, A.C. & Nicholson, W.L. (2005) 37th Lunar and Planetary Science Conference (League City, Texas), Lunar and Planetary Institute, Houston, Texas, p. 1366.Google Scholar
Schuerger, A.C., Richards, J.T., Newcombe, D.A. & Venkateswaren, K. (2006b). Icarus 181(1), 5262.CrossRefGoogle Scholar
Thomas, D.J. (1995). J. Brit. Interplanet. Soc. 48, 415418.Google Scholar
Thomas, D.J., Boling, J., Boston, P.J., Campbell, K.A., McSpadden, T., McWilliams, L. & Todd, P. (2006a). Gravit. Space Biol. 19(2), 91104.Google Scholar
Thomas, D.J., Boston, P.J., Todd, P., Boling, J., Campbell, K., Gregerson, R.G., Holt, A. III, McSpadden, T. & McWilliams, L. On to Mars 3, ed. Crossman, F. Univelt Publishing, accepted, http://www.marssociety.org/portal/TMS_Library/Thomas_2005.Google Scholar
Thomas, D.J., Sullivan, S.L., Price, A.L. & Zimmerman, S.M. (2005). Astrobiology 5(1), 6674.Google Scholar
Thomas, N.A., Todd, P., Metz, G.W., Platt, H., Kurk, A. & Thomas, D.J. (2006b). Gravit. Space Biol. 19(2), 131132.Google Scholar