Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T01:07:26.293Z Has data issue: false hasContentIssue false

Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars

Published online by Cambridge University Press:  25 October 2013

Lewis R. Dartnell*
Affiliation:
UCL Institute for Origins, University College London, UK The Centre for Planetary Sciences at UCL/Birkbeck, Earth Sciences, University College London, London, UK Department of Physics and Astronomy, Space Research Centre, University of Leicester, UK
Manish R. Patel
Affiliation:
Department of Physical Sciences, The Open University, Milton Keynes, UK

Abstract

Recent and proposed robotic missions to Mars are equipped with implements to expose or excavate fresh material from beneath the immediate surface. Once brought into the open, any organic molecules or potential biosignatures of present or past life will be exposed to the unfiltered solar ultraviolet (UV) radiation and face photolytic degradation over short time courses. The key question, then, is what is the window of opportunity for detection of recently exposed samples during robotic operations? Detection of autofluorescence has been proposed as a simple method for surveying or triaging samples for organic molecules. Using a Mars simulation chamber we conduct UV exposures on thin frozen layers of two model microorganisms, the radiation-resistant polyextremophile Deinococcus radiodurans and the cyanobacterium Synechocystis sp. PCC 6803. Excitation–emission matrices (EEMs) are generated of the full fluorescence response to quantify the change in signal of different cellular fluorophores over Martian equivalent time. Fluorescence of Deinococcus cells, protected by a high concentration of carotenoid pigments, was found to be relatively stable over 32 h of Martian UV irradiation, with around 90% of the initial signal remaining. By comparison, fluorescence from protein-bound tryptophan in Synechocystis is much more sensitive to UV photodegradation, declining to 50% after 64 h exposure. The signal most readily degraded by UV irradiation is fluorescence of the photosynthetic pigments – diminished to only 35% after 64 h. This sensitivity may be expected as the biological function of chlorophyll and phycocyanin is to optimize the harvesting of light energy and so they are readily photobleached. A significant increase in a ∼450 nm emission feature is interpreted as accumulation of fluorescent cellular degradation products from photolysis. Accounting for diurnal variation in Martian sunlight, this study calculates that frozen cellular biosignatures would remain detectable by fluorescence for at least several sols; offering a sufficient window for robotic exploration operations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, J. & Takács, M. (2004). Comparison of the natural fluorescence distribution among size fractions of terrestrial fulvic and humic acids and aquatic natural organic matter. Organ. Geochem. 35(10), 11411149.CrossRefGoogle Scholar
Ammor, M. (2007). Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization. J. Fluoresc. 17(5), 455459.Google Scholar
Banala, S., Moser, S., Müller, T., Kreutz, C., Holzinger, A., Lütz, C. & Kräutler, B. (2010). Hypermodified fluorescent chlorophyll catabolites: source of blue luminescence in senescent leaves. Angew. Chemi. Inter. Ed. 49(30), 5014.Google Scholar
Banerjee, M., Sinha, R.P. & Hader, D.-P. (1998). Biochemical and Spectroscopic Changes in Phycobiliproteins of the Cyanobacterium, Aulosira fertilissima, induced by UV-B Radiation. Acta Protozool. 37(3), 145148.Google Scholar
Baumstark-Khan, C. & Facius, R. (2001). Life under Conditions of Ionizing Radiation. Astrobiol., Quest Cond. Life 260283.Google Scholar
Carbonneau, M., Melin, A., Perromat, A. & Clerc, M. (1989). The action of free radicals on Deinococcus radiodurans carotenoids. Arch. Biochem. Biophys. 275(1), 244251.Google Scholar
Castenholz, R. (1988). Culturing methods for cyanobacteria. Methods Enzymol. 167, 6893.Google Scholar
Coble, P. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 51(4), 325346.Google Scholar
Cockell, C. & Knowland, J. (1999). Ultraviolet radiation screening compounds. Biol. Rev. 74(3), 311345.CrossRefGoogle ScholarPubMed
Cockell, C. & Raven, J. (2004). Zones of photosynthetic potential on Mars and the early Earth. Icarus 169(2), 300.CrossRefGoogle Scholar
Cockell, C., Schuerger, A., Billi, D., Friedmann, E. & Panitz, C. (2005). Effects of a simulated Martian UV flux on the Cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology 5(2), 127140.Google Scholar
Cockell, C., Catling, D.C., Davis, W.L., Snook, K., Kepner, R., Lee, P. & Mckay, C.P. (2000). The Ultraviolet Environment of Mars: Biological Implications Past, Present, and Future. Icarus 146, 343359.Google Scholar
Cordoba-Jabonero, C., Zorzano, M., Selsis, F., Patel, M. & Cockell, C. (2005). Radiative habitable zones in Martian polar environments. Icarus 175(2), 360371.Google Scholar
Cory, & McKnight, (2005). Fluorescence Spectroscopy Reveals Ubiquitous Presence of Oxidized and Reduced Quinones in Dissolved Organic Matter. Environmental Science & Technology 39(21), 81428149.Google Scholar
Dartnell, L.R. (2011). Ionizing radiation and life. Astrobiology 11(6), 551582.Google Scholar
Dartnell, L.R., Desorgher, L., Ward, J. & Coates, A. (2007a). Modelling the surface and subsurface Martian radiation environment: implications for Astrobiology. Geophys. Res. Lett. 34(2), L02207.Google Scholar
Dartnell, L.R., Desorgher, L., Ward, J.M. & Coates, A.J. (2007b). Martian sub-surface ionising radiation: biosignatures and geology. Biogeosciences 4, 545558.Google Scholar
Dartnell, L.R., Storrie-Lombardi, M.C. & Ward, J.M. (2010). Complete fluorescent fingerprints of extremophilic and photosynthetic microbes. Int. J. Astrobiol. 9(4), 245257.Google Scholar
Dartnell, L.R., Storrie-Lombardi, M., Mullineaux, C., Ruban, A., Wright, G., Griffiths, A., Muller, J.-P. & Ward, J. (2011). Degradation of cyanobacterial biosignatures by ionizing radiation. Astrobiology 11(10), 9971016.Google Scholar
Dartnell, L.R., Patel, M., Storrie-Lombardi, M.C., Ward, J.M. & Muller, J.-P. (2012). Experimental determination of photostability and fluorescence-based detection of PAHs on the Martian surface. Meteorit. Planet. Sci. 47(5), 806819.Google Scholar
Edgett, K., Ravine, M. & Caplinger, M. (2009). The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) Flight Instrument. In 40th Lunar and Planetary Science Conf. (Lunar and Planetary Science XL), The Woodlands, Texas, held 23–27 March, 2009, id.1197.Google Scholar
Ellery, A. & Wynn-Williams, D. (2003). Why Raman Spectroscopy on Mars? A case of the right tool for the right job. Astrobiology 3(3), 565579.Google Scholar
Evans-Nguyen, T., Becker, L., Doroshenko, V. & Cotter, R. (2008). Development of a low power, high mass range mass spectrometer for Mars surface analysis. Int. J. Mass Spectrom. 278(2–3), 170177.Google Scholar
Friedmann, E. (1986). The antarctic cold desert and the search for traces of life on Mars. Adv. Space Res. 6(12), 265268.Google Scholar
Goesmann, F., Becker, L. & Raulin, F. (2009). MOMA, the search for organics of the ExoMars mission. EPSC Abstr. 4, EPSC2009-624.Google Scholar
Gorevan, S. et al. (2003). Rock abrasion tool: Mars exploration rover mission. J. Geophys. Res. 108(E12), 8068.Google Scholar
Griffiths, A., Coates, A., Muller, J.-P., Storrie-Lombardi, M., Jaumann, R., Josset, J.-L., Paar, G. & Barnes, D. (2008). Enhancing the effectiveness of the ExoMars PanCam instrument for astrobiology. Geophys. Res. Abstr. 10, EGU2008-A-09486.Google Scholar
Hua, B., Dolan, F., Mcghee, C., Clevenger, T.E. & Deng, B. (2007). Water-source characterization and classification with fluorescence EEM spectroscopy: PARAFAC analysis. Int. J. Environ. Anal. Chem. 87(2), 135147.Google Scholar
JiJi, R., Cooper, G. & Booksh, K. (1999). Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic hydrocarbons. Anal. Chim. Acta 397(1–3), 6172.Google Scholar
Jorge Villar, S. & Edwards, H. (2006). Raman spectroscopy in astrobiology. Anal. Bioanal. Chem. 384(1), 100113.Google Scholar
Keränen, M., Aro, E.-M. & Tyystjärvi, E. (1999). Excitation-Emission Map as a Tool in Studies of Photosynthetic Pigment-Protein Complexes. Photosynthetica 37(2), 225237.Google Scholar
Ko, E., Lee, C., Kim, Y. & Kim, K. (2003). Monitoring PAH-contaminated soil using laser-induced fluorescence (LIF). Environ. Technol. 24(9), 11571164.Google Scholar
Kräutler, B., Banala, S., Moser, S., Vergeiner, C., Müller, T., Lütz, C. & Holzinger, A. (2010). A novel blue fluorescent chlorophyll catabolite accumulates in senescent leaves of the peace lily and indicates a split path of chlorophyll breakdown. FEBS Lett. 584(19), 42154221.Google Scholar
Lemee, L., Peuchant, E., Clerc, M., Brunner, M. & Pfander, H. (1997). Deinoxanthin: a new carotenoid isolated from Deinococcus radiodurans. Tetrahedron 53(3), 919926.Google Scholar
Mahaffy, P. et al. (2012). The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170(1–4), 401478.Google Scholar
Marshall, C. & Olcott Marshall, A. (2010). The potential of Raman spectroscopy for the analysis of diagenetically transformed carotenoids. Phil. Trans. R. Soc. A, Math. Phys. Eng. Sci. 368(1922), 31373144.Google Scholar
Moser, S., Müller, T., Ebert, M.-O., Jockusch, S., Turro, N.J. & Kräutler, B. (2008). Blue luminescence of ripening bananas. Angew. Chem. Int. Ed. 47(46), 89548957.Google Scholar
Moser, S., Müller, T., Holzinger, A., Lütz, C., Jockusch, S., Turro, N. & Kräutler, B. (2009). Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death. Proc. Natl. Acad. Sci. USA 106(37), 1553815543.Google Scholar
Muller, J.-P., Storrie-Lombardi, M. & Fisk, M. (2009). WALI – Wide Angle Laser Imaging enhancement to ExoMars PanCam: a system for organics and life detection. EPSC Abstr. 4, EPSC2009-2674-2001.Google Scholar
Nadeau, J., Perreault, N., Niederberger, T., Whyte, L., Sun, H. & Leon, R. (2008). Fluorescence microscopy as a tool for in situ life detection. Astrobiology 8(4), 859874.Google Scholar
Okon, A.B. (2010). Mars Science Laboratory Drill. In Proc. 40th Aerospace Mechanisms Symp., NASA Kennedy Space Center, 12–14 May, 2010, p 116.Google Scholar
Olsson-Francis, K. & Cockell, C. (2010). Experimental methods for studying microbial survival in extraterrestrial environments. J. Microbiol. Methods 80(1), 113.Google Scholar
Patel, M., Zarnecki, J. & Catling, D. (2002). Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor. Planet. Space Sci. 50(9), 915927.CrossRefGoogle Scholar
Patel, M., Bérces, A., Kerékgyárto, T., Rontó, G., Lammer, H. & Zarnecki, J. (2004). Annual solar UV exposure and biological effective dose rates on the Martian surface. Adv. Space Res. 33(8), 12471252.Google Scholar
Patra, D. & Mishra, A. (2001). Investigation on simultaneous analysis of multicomponent polycyclic aromatic hydrocarbon mixtures in water samples: a simple synchronous fluorimetric method. Talanta 55(1), 143153.Google Scholar
Pavlov, A., Blinov, A. & Konstantinov, A. (2002). Sterilization of Martian surface by cosmic radiation. Planet. Space Sci. 50(7–8), 669673.Google Scholar
Rohde, R. & Price, P. (2007). Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc. Natl. Acad. Sci.USA 104(42), 1659216597.Google Scholar
Rull, F. et al. (2010). ExoMars Raman laser spectrometer overview. Proc. SPIE 7819(1), 781911–15.Google Scholar
Sims, M., Cullen, D., Bannister, N., Grant, W., Henry, O., Jones, R., McKnight, D., Thompson, D. & Wilson, P. (2005). The specific molecular identification of life experiment (SMILE). Planet. Space Sci. 53(8), 781791.Google Scholar
Sinha, R., Richter, P., Faddoul, J., Braun, M. & Hader, D.-P. (2002). Effects of UV and visible light on cyanobacteria at the cellular level. Photochem. Photobiol. Sci. 1(8), 553559.CrossRefGoogle ScholarPubMed
Sinha, R.P., Kumar, H.D., Kumar, A. & Hader, D.-P. (1995). Effects of UV-B irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in cyanobacteria. Acta Protozool. 34(3), 187192.Google Scholar
Sohn, M., Himmelsbach, D., Barton, F. & Fedorka-Cray, P. (2009). Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens. Appl. Spectrosc. 63(11), 12511255.CrossRefGoogle ScholarPubMed
Storrie-Lombardi, M., Muller, J., Fisk, M., Griffiths, A. & Coates, A. (2008). Potential for non-destructive astrochemistry using the ExoMars PanCam. Geophys. Res. Lett. 35, L12201.Google Scholar
Storrie-Lombardi, M. & Sattler, B. (2009). Laser-Induced Fluorescence Emission (L.I.F.E.): in situ nondestructive detection of microbial life in the ice covers of Antarctic Lakes. Astrobiology 9(7), 659672.Google Scholar
Storrie-Lombardi, M., Muller, J.-P., Fisk, M., Cousins, C., Sattler, B., Griffiths, A. & Coates, A. (2009). Laser-Induced Fluorescence Emission (L.I.F.E.): searching for Mars organics with a UV-enhanced PanCam. Astrobiology 9(10), 953964.Google Scholar
Vago, J., Gardini, B., Kminek, G., Baglioni, P., Gianfiglio, G., Santovincenzo, A., Bayon, S. & van Winnendael, M. (2006). ExoMars: searching for Life on the Red Planet. ESA Bull. 126, 1723.Google Scholar
Warren, S.G. (1984). Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 23(8), 12061225.Google Scholar
Weinstein, S. et al. (2008). Application of pulsed-excitation fluorescence imager for daylight detection of sparse life in tests in the Atacama Desert. J. Geophys. Res. 113(G1), G01S90.Google Scholar
Wynn-Williams, D.D. & Edwards, H.G.M. (2000). Antarctic ecosystems as models for extraterrestrial surface habitats. Planet. Space Sci. 48, 10651075.CrossRefGoogle Scholar
Ziegmann, M., Abert, M., Müller, M. & Frimmel, F.H. (2010). Use of fluorescence fingerprints for the estimation of bloom formation and toxin production of Microcystis aeruginosa. Water Res. 48, 195204.Google Scholar