Article contents
Combination between Ca, P and Y in the Martian Meteorite NWA 6963 could be used as a strategy to indicate liquid water reservoirs on ancient Mars?
Published online by Cambridge University Press: 11 May 2018
Abstract
Although we have learned much about the geological characteristics and history of Mars, the gaps in our knowledge certainly exceed what we understand. Martian meteorites, such as Northwest Africa (NWA) 6963, can be excellent materials for understanding the present and past of Mars, as part of the records of the planet's evolution is preserved in these extraterrestrial rocks. Micro X-ray fluorescence provided data, in which it was possible to verify the presence of Ca, P and Y elements, which are call attention because they were detected superimposed in certain regions. The way these elements were detected indicates the formation of minerals composed by the combination of these elements, such as, for example, Calcite (CaCO3), Apatite [Ca5(PO4)3(OH, F, Cl)], Merrilite [Ca9NaMg (PO4)7] and Xenotime (YPO4). These minerals are great indicators of aqueous environments. In general, the formation of these minerals is due to processes involving hydrothermal fluids or sources (>100 °C). Some geological indications suggest that in the past there might have been a large amount of liquid water, which could have accumulated large reservoirs below the Martian surface. Thus, the laboratory study of Martian meteorites and interpretations of minerals present in these samples can contribute in a complementary way to the existing results of telescopic observations and/or missions of space probes as a strategy to indicate reservoirs of liquid water.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2018
References
- 1
- Cited by