Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T14:28:10.178Z Has data issue: false hasContentIssue false

Circumbinary habitability niches

Published online by Cambridge University Press:  22 December 2014

Paul A. Mason*
Affiliation:
Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA Department of Mathematics and Physical Sciences, New Mexico State University – DACC, Las Cruces, NM 88003, USA
Jorge I. Zuluaga
Affiliation:
FACom – Instituto de Física – FCEN, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
Pablo A. Cuartas-Restrepo
Affiliation:
FACom – Instituto de Física – FCEN, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
Joni M. Clark
Affiliation:
Department of Mathematics and Physical Sciences, New Mexico State University – DACC, Las Cruces, NM 88003, USA

Abstract

Binaries could provide the best niches for life in the Galaxy. Although counterintuitive, this assertion follows directly from stellar tidal interaction theory and the evolution of lower mass stars. There is strong evidence that chromospheric activity of rapidly rotating young stars may be high enough to cause mass loss from atmospheres of potentially habitable planets. The removal of atmospheric water is most critical. Tidal breaking in binaries could help reduce magnetic dynamo action and thereby chromospheric activity in favour of life. We call this the Binary Habitability Mechanism (BHM) that we suggest allows for water retention at levels comparable to or better than the Earth. We discuss novel advantages that life may exploit, in these cases, and suggest that life may even thrive on some circumbinary planets. We find that while many binaries do not benefit from BHM, high-quality niches do exist for various combinations of stars between 0.55 and 1.0 solar masses. For a given pair of stellar masses, BHM operates only for certain combinations of period and eccentricity. Binaries having a solar-type primary seem to be quite well-suited niches having wide and distant habitable zones with plentiful water and sufficient light for photosynthetic life. We speculate that, as a direct result of BHM, conditions may be suitable for life on several planets and possibly even moons of giant planets orbiting some binaries. Lower mass combinations, while more restrictive in parameter space, provide niches lasting many billions of years and are rich suppliers of photosynthetic photons. We provide a publicly available web-site (http://bit.ly/BHM-calculator or http://bit.ly/BHM-calculator-mirror), which calculates the BHM effects presented in this paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basri, G. (1987). Astrophys. J. 316, 377.CrossRefGoogle Scholar
Clanton, C. (2013). Astrophys. J. Lett. 768, L15.CrossRefGoogle Scholar
Girardi, L., Bressan, A., Bertelli, G. & Chiosi, C. (2000). Astron. Astrophys. Suppl. 141, 371.Google Scholar
Grießmeier, J.-M., Preusse, S., Khodachenko, M., Motschmann, U., Mann, G. & Rucker, H.O. (2007). Planet. Space Sci. 55, 618.CrossRefGoogle Scholar
Haghighipour, N. (2009). ArXiv e-prints.Google Scholar
Haghighipour, N. & Kaltenegger, L. (2013). Astrophys. J. 777, 166.CrossRefGoogle Scholar
Harrington, R.S. (1977). Astron. J. 82, 753.Google Scholar
Heller, R. & Armstrong, J. (2014). ArXiv e-prints.Google Scholar
Heller, R. & Barnes, R. (2013). Astrobiology 13, 18.CrossRefGoogle Scholar
Heller, R. & Zuluaga, J.I. (2013). Astrophys. J. Lett. 776, L33.Google Scholar
Hinkel, N.R. & Kane, S.R. (2013). Astrophys. J. 774, 27.Google Scholar
Holman, M.J. & Wiegert, P.A. (1999). Astron. J. 117, 621.Google Scholar
Huang, S.-S. (1960). Publ. Astron. Soc. Pacific 72, 106.CrossRefGoogle Scholar
Hut, P. (1981). Astron. Astrophys. 99, 126.Google Scholar
Kane, S.R. & Hinkel, N.R. (2013). Astrophys. J. 762, 7.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108.Google Scholar
Kiang, N.Y., Segura, A., Tinetti, G., Govindjee, , Blankenship, R.E., Cohen, M., Siefert, J., Crisp, D. & Meadows, V.S. (2007a). Astrobiology 7, 252.Google Scholar
Kiang, N.Y., Siefert, J., Govindjee, , & Blankenship, R.E. (2007b). Astrobiology 7, 222.Google Scholar
Kopparapu, R.K., Ramirez, R., Kasting, J.F., Eymet, V., Robinson, T.D., Mahadevan, S., Terrien, R.C., Domagal-Goldman, S., Meadows, V. & Deshpande, R. (2013). Astrophys. J. 765, 131.Google Scholar
Kopparapu, R.K., Ramirez, R.M., SchottelKotte, J., Kasting, J.F., Domagal-Goldman, S. & Eymet, V. (2014). Astrophys. J. Lett. 787, L29.Google Scholar
Lammer, H., Kasting, J.F., Chassefière, E., Johnson, R.E., Kulikov, Y.N. & Tian, F. (2009). “Atmospheric Escape and Evolution of Terrestrial Planets and Satellites”, p. 399.Google Scholar
Lammer, H., Lichtenegger, H.I.M., Khodachenko, M.L., Kulikov, Y.N. & Griessmeier, J. (2012). In Astronomical Society of the Pacific Conf. Series, vol. 450, ed. Beaulieu, J.P., Dieters, S. & Tinetti, G., pp. 139.Google Scholar
Liu, H.G. (2012). Acta Astron. Sin. 53, 538.Google Scholar
Lovelock, J.E. (1972). Atmos. Environ. (1967) 6, 579.Google Scholar
Mason, P.A. & Clark, J.M. (2012). In American Astronomical Society Meeting Abstracts, vol. 220, American Astronomical Society Meeting, Abstracts #220, 525.04.Google Scholar
Mason, P.A., Zuluaga, J.I., Clark, J.M. & Cuartas-Restrepo, P.A. (2013). Astrophys. J. Lett. 774, L26.Google Scholar
Müller, T.W. & Haghighipour, N. (2014). Astrophys. J. 782, 26.Google Scholar
Quarles, B., Musielak, Z.E. & Cuntz, M. (2012). Astrophys. J. 750, 14.Google Scholar
Rauer, H., et al. (2013). arXiv:1310.0696.Google Scholar
Ricker, G.R., et al. (2010). Bull. Am. Astron. Soc. 42, 459.Google Scholar
Tian, F. (2009). Astrophys. J. 703, 905.Google Scholar
Welsh, W.F., Orosz, J.A., Carter, J.A. & Fabrycky, D.C. (2014). In IAU Symp., vol. 293, ed. Haghighipour, N., pp. 125132.Google Scholar
Wood, B.E., Müller, H.-R., Zank, G.P., Linsky, J.L. & Redfield, S. (2005). Astrophys. J. Lett. 628, L143.Google Scholar
Zahn, J.-P. (2008). EAS Publ. Ser. 29, 67.Google Scholar
Zendejas, J., Segura, A. & Raga, A.C. (2010). Icarus 210, 539.Google Scholar
Zuluaga, J.I., Bustamante, S., Cuartas, P.A. & Hoyos, J.H. (2013). Astrophys. J. 770, 23.Google Scholar
Zuluaga, J.I., Salazar, J.F., Cuartas-Restrepo, P. & Poveda, G. (2014). Biogeosci. Discuss. 11, 8443.Google Scholar