Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T07:00:51.759Z Has data issue: false hasContentIssue false

Atmospheric entry of sub-millimetre-sized grains into Mars atmosphere: white soft mineral micrometeoroids

Published online by Cambridge University Press:  01 June 2022

Gaia Micca Longo
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 – 70125, Bari, Italy Istituto per la Scienza e Tecnologia dei Plasmi – Consiglio Nazionale delle Ricerche, Bari Section – Via Amendola 122/D – 70125, Bari, Italy
Savino Longo*
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4 – 70125, Bari, Italy Istituto per la Scienza e Tecnologia dei Plasmi – Consiglio Nazionale delle Ricerche, Bari Section – Via Amendola 122/D – 70125, Bari, Italy
*
Author for correspondence: Savino Longo, E-mail: [email protected]

Abstract

In this work, we study the passage through the Martian atmosphere of micrometeorites with a white soft mineral (WSM) composition, which have been proposed as transporters of organic molecules in the solar system. The atmospheric entry model includes the dynamics of the atmospheric entry and the physico-chemical aspects of the thermal decomposition process. The results show that, due to the reduced entry speed, Mars may have been a promising collector of matter in this form. In particular, the chemical decomposition process is much more effective than in the case of the Earth's atmosphere in maintaining a moderate temperature of the micrometeorite during most of the entry process.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bisceglia, E, Micca Longo, G and Longo, S (2017) Thermal decomposition rate of MgCO3 as an inorganic astrobiological matrix in meteorites. International Journal of Astrobiology 16, 130136.CrossRefGoogle Scholar
Borg, LE, Connelly, JN, Nyquist, LE, Shih, CY, Wiesmann, H and Reese, Y (1999) The age of the carbonates in Martian meteorite ALH84001. Science (New York, N.Y.) 286, 9094.CrossRefGoogle ScholarPubMed
Boynton, WV, Ming, DW, Kounaves, SP, Young, SMM, Arvidson, RE, Hecht, MH, Hoffman, J, Niles, PB, Hamara, DK, Quinn, RC, Smith, PH, Sutter, B, Catling, DC and Morris, RV (2009) Evidence for calcium carbonate at the Mars Phoenix landing site. Science (New York, N.Y.) 325, 6164.CrossRefGoogle ScholarPubMed
Canepa, C (2020) A model study on the dynamics of the amino acid content in micrometeoroids during atmospheric entry. Chemistry 2, 918936.CrossRefGoogle Scholar
Clemett, SJ, Chillier, XDF, Gillette, S, Zare, RN, Maurette, M, Engrand, C and Kurat, G (1998) Observation of indigenous polycyclic aromatic hydrocarbons in ‘giant’ carbonaceous Antarctic micrometeorites. Origins of Life and Evolution of the Biosphere 28, 425448.CrossRefGoogle ScholarPubMed
Davies, PCW (1996) The transfer of viable microorganisms between planets. In Bock, GR and Goode, JA (eds). Evolution of Hydrothermal Ecosystems on Earth (and Mars?). Hoboken, NJ: John Wiley, pp. 304314.Google Scholar
Ehlmann, BL, Mustard, JF, Murchie, SF, and Poulet, F, Bishop, JL, Brown, AJ, Calvin, WM, Clark, RN, Des Marais, DJ, Milliken, RE, Roach, LH, Roush, TL, Swayze, GA and Wray, JJ (2008) Orbital identification of carbonate-bearing rocks on Mars. Science (New York, N.Y.) 322, 18281832.CrossRefGoogle ScholarPubMed
Flynn, GJ and McKay, DS (1988) Meteorites on Mars. In Workshop on Mars Sample Return Science. Houston: Lunar and Planetary Institute.Google Scholar
Flynn, GJ and McKay, DS (1990) An assessment of the meteoritic contribution to the Martian soil. Journal of Geophysical Research: Solid Earth 95, 1449714509.CrossRefGoogle Scholar
Flynn, GJ, Keller, LP, Feser, M, Wirick, S and Jacobsen, C (2003) The origin of organic matter in the Solar System: evidence from the interplanetary dust particles. Geochimica et Cosmochimica Acta 67, 47914806.CrossRefGoogle Scholar
Gendrin, A, Mangold, N, Bibring, JP, Langevin, Y, Gondet, B, Poulet, F, Bonello, G, Quantin, C, Mustard, J, Arvidson, R and Lemouélic, S (2005) Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science (New York, N.Y.) 307, 15871591.CrossRefGoogle ScholarPubMed
Glavin, DP and Bada, JL (2001) Survival of amino acids in micrometeorites during atmospheric entry. Astrobiology 1, 259269.CrossRefGoogle ScholarPubMed
Gooding, JL, Wentworth, SJ and Zolensky, ME (1988) Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite. Geochimica et Cosmochimica Acta 52, 909915.CrossRefGoogle Scholar
Gooding, JL, Wentworth, SJ and Zolensky, ME (1991) Aqueous alteration of the Nakhla meteorite. Meteoritics 26, 135143.CrossRefGoogle Scholar
Grün, E, Zook, HA, Fechtig, H and Giese, RH (1985) Collisional balance of the meteoritic complex. Icarus 62, 244272.CrossRefGoogle Scholar
Horneck, G, Bücker, H and Reitz, G (1994) Long-term survival of bacterial spores in space. Advances in Space Research 14, 4145.CrossRefGoogle ScholarPubMed
Kerridge, JF and Matthews, MS (1988) Meteorites and the Early Solar System. Tucson: University of Arizona Press.Google Scholar
Langevin, Y, Poulet, F, Bibring, JP and Gondet, B (2005) Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science (New York, N.Y.) 307, 15841586.CrossRefGoogle ScholarPubMed
Love, SG and Brownlee, DE (1991) Heating and thermal transformation of micrometeoroids entering the Earth's atmosphere. Icarus 89, 2643.CrossRefGoogle Scholar
Matrajt, G, Caro, GM, Dartois, E, d'Hendecourt, L, Deboffle, D and Borg, J (2005) FTIR analysis of the organics in IDPs: comparison with the IR spectra of the diffuse interstellar medium. Astronomy & Astrophysics 433, 979995.CrossRefGoogle Scholar
Matrajt, G, Brownlee, D, Sadilek, M and Kruse, L (2006) Survival of organic phases in porous IDPs during atmospheric entry: a pulse-heating study. Meteoritics & Planetary Science 41, 903911.CrossRefGoogle Scholar
McKay, DS, Gibson, EK, Thomas-Keprta, KL, Vali, H, Romanek, CS, Clemett, SJ, Chillier, XDF, Maechling, CR and Zare, RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science (New York, N.Y.) 273, 924930.CrossRefGoogle ScholarPubMed
McLennan, SM, Anderson, RB, Bell, JF, Bridges, JC, Calef, F, Campbell, JL, Clark, BC, Clegg, S, Conrad, P, Cousin, A, Des Marais, DJ, Dromart, G, Dyar, MD, Edgar, LA, Ehlmann, BL, Fabre, C, Forni, O, Gasnault, O, Gellert, R, Gordon, S, Grant, JA, Grotzinger, JP, Gupta, S, Herkenhoff, KE, Hurowitz, JA, King, PL, Le Mouélic, S, Leshin, LA, Léveillé, R, Lewis, KW, Mangold, N, Maurice, S, Ming, DW, Morris, RV, Nachon, M, Newsom, HE, Ollila, AM, Perrett, GM, Rice, MS, Schmidt, ME, Schwenzer, SP, Stack, K, Stolper, EM, Sumner, DY, Treiman, AH, VanBommel, S, Vaniman, DT, Vasavada, A, Wiens, RC, Yingst, RA (2014) Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science (New York, N.Y.) 343, 1244734. 115.CrossRefGoogle ScholarPubMed
Micca Longo, G and Longo, S (2017) Thermal decomposition of MgCO3 during the atmospheric entry of micrometeoroids. International Journal of Astrobiology 16, 368378.CrossRefGoogle Scholar
Micca Longo, G and Longo, S (2018) Theoretical analysis of the atmospheric entry of sub-mm meteoroids of MgxCa1−xCO3 composition. Icarus 310, 194202.CrossRefGoogle Scholar
Micca Longo, G and Longo, S (2020) The role of primordial atmosphere composition in organic matter delivery to early Earth. Rendiconti Lincei. Scienze Fisiche e Naturali 31, 5364.CrossRefGoogle Scholar
Micca Longo, G and Longo, S (2021) Micrometeoroids as carriers of organics: modeling of the atmospheric entry and chemical decomposition of sub-millimeter grains. In Vukotic, B, Seckbach, J and Gordon, R (eds). Planet Formation and Panspermia: New Prospects for the Movement of Life through Space. Hoboken: John Wiley & Sons, pp. 207249.CrossRefGoogle Scholar
Micca Longo, G, D'Elia, M, Fonti, S, Longo, S, Mancarella, F and Orofino, V (2019 a) Kinetics of white soft minerals (WSMs) decomposition under conditions of interest for astrobiology: a theoretical and experimental study. Geosciences 9, 101.CrossRefGoogle Scholar
Micca Longo, G, Piccinni, V and Longo, S (2019 b) Evaluation of CaSO4 micrograins in the context of organic matter delivery: thermochemistry and atmospheric entry. International Journal of Astrobiology 18, 345352.CrossRefGoogle Scholar
Nachon, M, Clegg, SM, Mangold, N, Schröder, S, Kah, LC, Dromart, G, Ollila, A, Johnson, JR, Oehler, DZ, Bridges, JC, Le Mouélic, S, Forni, O, Wiens, RC, Anderson, RB, Blaney, DL, Bell, JF, Clark, B, Cousin, A, Dyar, MD, Ehlmann, B, Fabre, C, Gasnault, O, Grotzinger, J, Lasue, J, Lewin, E, Léveillé, R, McLennan, S, Maurice, S, Meslin, P-Y, Rapin, W, Rice, M, Squyres, SW, Stack, K, Sumner, DY, Vaniman, D and Wellington, D (2014) Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. Journal of Geophysical Research: Planets 119, 19912016.CrossRefGoogle Scholar
Nicholson, WL, Munakata, N, Horneck, G, Melosh, HJ and Setlow, P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews 64, 548572.CrossRefGoogle ScholarPubMed
Öpik, EJ (1958) Physics of Meteor Flight in the Atmosphere. New York: Interscience.Google Scholar
Palomba, E, Zinzi, A, Cloutis, EA, d'Amore, M, Grassi, D and Maturilli, A (2009) Evidence for Mg-rich carbonates on Mars from a 3.9 μm absorption feature. Icarus 203, 5865.CrossRefGoogle Scholar
Squyres, SW, Arvidson, RE, Bell, JF, Calef, FJ, Clark, BC, Cohen, BA, Crumpler, LA, de Souza, PA, Farrand, WH, Gellert, R, Grant, J, Herkenhoff, KE, Hurowitz, JA, Johnson, JR, Jolliff, BL, Knoll, AH, Li, R, McLennan, SM, Ming, DW, Mittlefehldt, DW, Parker, TJ, Paulsen, G, Rice, MS, Ruff, SW, Schröder, C, Yen, AS and Zacny, K (2012) Ancient impact and aqueous processes at Endeavour Crater, Mars. Science (New York, N.Y.) 336, 570576.CrossRefGoogle ScholarPubMed
Thomas-Keprta, KL, Clemett, SJ, Mckay, DS, Gibson, EK and Wentworth, SJ (2009) Origins of magnetite nanocrystals in Martian meteorite ALH84001. Geochimica et Cosmochimica Acta 73, 66316677.CrossRefGoogle Scholar
Tomkins, AG, Genge, MJ, Tait, AW, Alkemade, SL, Langendam, AD, Perry, PP and Wilson, SA (2019) High survivability of micrometeorites on Mars: sites with enhanced availability of limiting nutrients. Journal of Geophysical Research: Planets 124, 18021818.CrossRefGoogle Scholar
Treiman, AH, Barrett, RA and Gooding, JL (1993) Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite. Meteoritics 28, 8697.CrossRefGoogle Scholar
Wentworth, SJ and Gooding, JL (1994) Carbonates and sulfates in the Chassigny meteorite: further evidence for aqueous chemistry on the SNC parent planet. Meteoritics 29, 860863.CrossRefGoogle Scholar
Wilson, AP, Genge, MJ, Krzesińska, AM and Tomkins, AG (2019) Atmospheric entry heating of micrometeorites at Earth and Mars: implications for the survival of organics. Meteoritics & Planetary Science 54, 119.CrossRefGoogle Scholar
Wray, JJ, Murchie, SL, Bishop, JL, Ehlmann, BL, Milliken, RE, Wilhelm, MB, Seelos, KD and Chojnacki, M (2016) Orbital evidence for more widespread carbonate-bearing rocks on Mars. Journal of Geophysical Research: Planets 121, 652677.CrossRefGoogle Scholar