Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T23:25:00.713Z Has data issue: false hasContentIssue false

An Assessment of macro-scale in situ Raman and ultraviolet-induced fluorescence spectroscopy for rapid characterization of frozen peat and ground ice

Published online by Cambridge University Press:  24 August 2015

Janelle R. Laing
Affiliation:
Department of Environmental Studies and Sciences, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, CanadaR3B 2E9
Hailey C. Robichaud
Affiliation:
Department of Geography, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, CanadaR3B 2E9
Edward A. Cloutis
Affiliation:
Department of Geography, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, CanadaR3B 2E9

Abstract

The search for life on other planets is an active area of research. Many of the likeliest planetary bodies, such as Europa, Enceladus, and Mars are characterized by cold surface environments and ice-rich terrains. Both Raman and ultraviolet-induced fluorescence (UIF) spectroscopies have been proposed as promising tools for the detection of various kinds of bioindicators in these environments. We examined whether macro-scale Raman and UIF spectroscopy could be applied to the analysis of unprocessed terrestrial frozen peat and clear ground ice samples for detection of bioindicators. It was found that this approach did not provide unambiguous detection of bioindicators, likely for a number of reasons, particularly due to strong broadband induced fluorescence. Other contributing factors may include degradation of organic matter in frozen peat to the point that compound-specific emitted fluorescence or Raman peaks were not resolvable. Our study does not downgrade the utility of either UIF or Raman spectroscopy for astrobiological investigations (which has been demonstrated in previous studies), but does suggest that the choice of instrumentation, operational conditions and sample preparation are important factors in ensuring the success of these techniques.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakker, R.J. (2004). Raman spectra of fluid and crystal mixtures in the systems H2O, H2O-NaCl and H2O-MgCl2 at low temperatures: applications to fluid inclusion research. Can. Min. 42, 12831314.CrossRefGoogle Scholar
Barsberg, S., Matousek, P. & Towrie, M. (2005). Structural analysis of lignin by resonance Raman spectroscopy. Macromol. Biosci. 5, 743752.Google Scholar
Bay, R., Bramall, N. & Price, P.B. (2005). Search for microbes and biogenic compounds in polar ice using fluorescence. In Life in Ancient Ice, eds. Castello, J.D. & Rogers, S.O., pp. 268276. Princeton University Press, Princeton, NJ.Google Scholar
Beegle, L.W. et al. (2014). SHERLOC: Scanning habitable environments with Raman and luminescence for organics and chemicals, an investigation for 2020. Lunar and Planetary Science Conf. 45, abstract #2835.Google Scholar
Böttger, U., de Vera, J.P., Fritz, J., Weber, I., Hübers, H.W. & Schulze-Makuch, D. (2012). Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet. Space Sci. 60(1), 356362.CrossRefGoogle Scholar
Boynton, W., Feldman, W., Squyres, S., Prettyman, T., Bruckner, J., Evans, L., Reedy, R., Starr, R., Arnold, J. & Drake, D. (2002). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297, 8185.Google Scholar
Byrne, S., Dundas, C.M., Kennedy, M.R., Mellon, M.T., McEWwan, A.S., Cull, S.C., Dauber, I.J., Shean, D.E., Seelos, K.D. & Murchie, S.L. (2009). Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 16741676.Google Scholar
Cai, Z.-L., Zeng, H., Chen, M. & Larkum, A.W.D. (2002). Raman spectroscopy of chlorophyll d from Acaryochloris marina . Biochimica et Biophysica Acta 1556, 8991.CrossRefGoogle ScholarPubMed
Carrozzo, F.G., Bellucci, G., Altieri, F., D'Aversa, E. & Bibring, J.-P. (2009). Mapping of water frost and ice at low latitudes on Mars. Icarus 203, 406420.CrossRefGoogle Scholar
Dartnell, L.R., Patel, M.R., Storrie-Lombardi, M.C., Ward, J.M. & Muller, J.-P. (2012). Experimental determination of photostability and fluorescence-based detection of PAHs on the martian surface. Meteorit. Planet. Sci. 47, 806819.Google Scholar
De Gelder, J., De Gussem, K., Vandenabeele, P. & Moens, L. (2007). Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 11331147.CrossRefGoogle Scholar
Edwards, H.G.M., Hutchinson, I.B., Ingley, R., Parnell, J., Vitek, P. & Jehlicka, J. (2013). Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13, 543549.Google Scholar
Eshelman, E., Daly, M.G., Slater, G., Dietrich, P. & Gravel, J.-F. (2014). Ultraviolet Raman wavelength for the in-situ analysis of organic compounds relevant to astrobiology. Planet. Space Sci. 93–94, 6570.CrossRefGoogle Scholar
European Space Agency (2014). ExoMars Mission (2018). http://exploration.esa.int/mars/48088-mission-overview/ (accessed 23 October 2014).Google Scholar
Farmer, C.B. & Doms, P.E. (1979). Global seasonal variation of water vapour on Mars and implications for permafrost. J. Geophys. Res. 84, 28812888.CrossRefGoogle Scholar
Faure, P. & Chosson, A. (1978). The translational lattice-vibration Raman spectrum of singe-crystal ice Ih. J. Glaciol. 21, 6572.Google Scholar
Fisk, M.R., Storrie-Lombardi, M.C., Douglas, S., Popa, R., McDonald, G. & Di Meo-Savoie, C. (2003). Evidence of biological activity in Hawaiian subsurface basalts. Geochem. Geophys. Geosy. 4(12). doi:10.1029/2002GC000387.CrossRefGoogle Scholar
Fukazawa, H. & Mae, S. (2000). The vibrational spectra of ice Ih and polar ice. In Physics of Ice Core Records. ed. Hondoh, T. Hokkaido University Press, Hokkaido, Japan, pp. 2542.Google Scholar
Gavrilov, M.Z. & Ermolenko, I.N. (1966). A study of cellulose luminescence. Zhurnal Prikladnoi Spektroscopii 5, 762765.Google Scholar
Gierlinger, N., Keplinger, T. & Harrington, M. (2012). Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 7, 16941708.Google Scholar
Gremlich, H.-U. & Yan, B. (2001). Infrared and Raman Spectroscopy of Biological Materials. CRC Press, New York, NY.Google Scholar
Groemer, G., Sattler, B., Weisleitner, K., Hunger, L., Kohstall, C., Frisch, A., Josefowicz, M., Meszynski, S., Storrie-Lombardi, M. & the MARS2013 Team (2014). Field trial of a dual-wavelength fluorescent emission (L.I.F.E.) instrument and the Magma White Rover during the MARS2013 Mars Analog Mission. Astrobiology 14, 391405.Google Scholar
Heldmann, J.L., Schurmeier, L., McKay, C., Davila, A., Stoker, C., Marinova, M. & Wilhelm, M.B. (2014). Midlatitude ice-rich ground on Mars as a target in the search for evidence of life and for in situ resource utilization on human missions. Astrobiology 14, 102118.CrossRefGoogle Scholar
Jorge-Villar, S.E. & Edwards, H.G.M. (2006). Raman spectroscopy in astrobiology. Anal. Bioanal. Chem. 384, 100113.Google Scholar
Maurice, S. et al. and the SuperCam Team (2015). Science objectives of the SuperCam instrument for the Mars2020 rover. Lunar and Planetary Science Conf. 46, abstract #2818.Google Scholar
Mellon, M.T. & Jakosky, B.M. (1993). Geographic variations in the thermal and diffusive stability of ground ice on Mars. J. Geophys. Res. 98, 33453364.Google Scholar
Mellon, M.T. & Jakosky, B.M. (1995). The distribution and behaviour of martian ground ice during past and present epochs. J. geophys. Res. 100, 1178111799.Google Scholar
Miteva, V., Teacher, C., Sowres, T. & Brenchley, J. (2009). Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microb. 11, 640656.Google Scholar
Mitrofanov, I.’ et al. (2002). Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science 297, 7881.CrossRefGoogle ScholarPubMed
Mustard, J.F. et al. (2013). Report of the Mars 2020 Science Definition Team, 154 pp., posted July 2013, by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.jpl,nasa.gov/reports/MEP/Mars_2020_SDT_Report_Final.pdf.Google Scholar
Paige, D. (1992). The thermal stability of near-surface ground ice on Mars. Nature 356, 4345.Google Scholar
Papageorgiou, G.C. (Ed.). (2004). Chlorophyll a Fluorescence: A Signature of Photosynthesis (Vol. 19). Springer, Dordretch, The Netherlands, 3, pp. 4748.Google Scholar
Park, S.-H., Kim, Y.-G., Kim, D., Cheong, H.-D., Choi, W.-S. & Lee, J.-I. (2010). Selecting characteristic Raman wavelengths to distinguish liquid water, water vapour, and ice water. J. Opt. Soc. Korea 14, 209214.Google Scholar
Ponosov, Y.S. & Stretslov, S.V. (2012). Measurements of Raman scattering by electrons in metals: the effects of electron-phonon coupling. Phys. Rev. B 86, 045138.Google Scholar
Price, P.B. & Sowers, T. (2004). Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. U. S. A. 101, 46314636.Google Scholar
Rapp, D. (2012). Use of Extraterrestrial Resources for Human Space Missions toMmoon or Mars. Springer Science & Business Media, Heidelberg, Germany.Google Scholar
Rohde, R.A. & Price, P.B. (2007). Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc. Natl. Acad. Sci. U. S. A. 104, 1659216597.Google Scholar
Rohde, R.A., Price, P.B., Bay, R.C. & Bramall, N. (2008). In situ microbial metabolism as a cause of gas anomalies in ice. Proc. Natl. Acad. Sci. U. S. A. 10, 86678867.CrossRefGoogle Scholar
Rivkina, E., Laurinavichyus, K. & Gilinchinsky, D.A. (2005). Microbial life below the freezing point within permafrost. In Life in Ancient Ice, eds. Castello, J.D. & Rogers, S.O., pp. 106117. Princeton University Press, Princeton, NJ.Google Scholar
Rull, F., Maurice, S., Diaz, E., Lopez, G., Catala, A. & RLS Team (2013). Raman laser spectrometer (RSL) for ExoMars 2018 rover mission: Current status and science operation mode on powdered samples. Lunar and Planetary Science Conf. 44, abstract #3110.Google Scholar
Sattler, B., Storrie-Lombardi, M.C., Foreman, C.M., Tilg, M. & Psenner, R. (2010). Laser-induced fluorescence emission (LIFE) from Lake Fryxall (Antarctica) cryoconites. Ann. Glaciol. 51, 145152.Google Scholar
Schenzel, K. & Fischer, S. (2004). Applications of FT Raman spectroscopy for the characterization of cellulose. Lenzinger Berichte 83, 6470.Google Scholar
Schuur, E.A.G., Vogel, J.G., Krummer, K.C., Lee, H., Sickman, J.O. & Osterkamp, T.E. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556559.Google Scholar
Schuur, E.A.G. & Abbott, B. (2011). High risk of permafrost thaw. Nature 480, 3233.Google Scholar
Serrano, P., Wagner, D., Böttger, U., de Vera, J.P., Lasch, P. & Hermelink, A. (2014). Single-cell analysis of the methanogenic archaeon Methanosarcina soligelidi from Siberian permafrost by means of confocal Raman microspectrocopy for astrobiological research. Planet. Space Sci. 98, 191198.Google Scholar
Skulinova, M. et al. (2014). Time-resolved stand-off UV-Raman spectroscopy for planetary exploration. Planet. Space Sci. 92, 88100.CrossRefGoogle Scholar
Smith, P.H., Tamppari, L.K., Arvidson, R.E., Bass, D., Blaney, D., Boynton, W.V., Carswell, A., Catling, D.C., Clark, B.C., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, H.P., Hecht, M.H., Hipkin, V., Hoffman, J., Hviid, S.F., Keller, H.U., Kounaves, S.P., Lange, C.F., Lemmon, M.T., Madsen, M.B., Markiewicz, W.J., Marshall, J., McKay, C.P., Mellon, M.T., Ming, D.W., Morris, R.V., Pike, W.T., Renno, N., Staufer, U., Stoker, C., Taylor, P., Whiteway, J.A., & Zent, A.P. (2009). H2O at the Phoenix landing site. Science 325(5936), 5861.Google Scholar
Smith, D.E. & Zuber, M.T. (1998). The relationship between MOLA northern hemisphere topography and the 6.1-Mbar atmospheric pressure surface of Mars. Geophys. Res. Lett. 25(24), 43974400.Google Scholar
Steven, B., Briggs, G., McKay, C.P., Pollard, W.H., Greer, C.W. & Whyte, L.G. (2007). Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. Microb. Ecol. 59, 513523.CrossRefGoogle Scholar
Steven, B., Pollard, W.H., Greer, C.W. & Whyte, L.G. (2008). Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ. Microbiol. 10, 33883403.Google Scholar
Storrie-Lombardi, M.C., Hug, W.F., McDonald, G.D., Tsapin, A.I. & Nealson, H.K. (2001). Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Rev. Sci. Instrum. 72, 44524459.Google Scholar
Storrie-Lombardi, M.C. & Sattler, B. (2009). Laser-induced fluorescence emission (LIFE): in situ nondestructive detection of microbial life in the ice covers of Antarctic lakes. Astrobiology 9(7), 659672.Google Scholar
Tung, H.C., Bramall, N.E. & Price, P.B. (2005). Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc. Natl. Acad. Sci. U. S. A. 102, 18292. http://www.jstor.org/stable/4152610.CrossRefGoogle ScholarPubMed
van Everdingen, R. (ed.) (1998). revised 2005. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO.Google Scholar
Vincendon, M., Forget, F. & Mustard, J. (2010). Water ice at low to midlatitudes on Mars. J. Geophys. Res. 115(E10). doi:10.1029/2010JE003594.Google Scholar
Vitek, P., Edwards, H.G.M., Jehlicka, J., Ascaso, C., De Los Rios, A., Valea, S., Jorge-Villar, S.E., Davila, A.F. & Wierzchos, J. (2014). Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Phil. Trans. R. Soc. A 368, 32053221.Google Scholar
Wilhelm, R.C., Radtke, K.J., Mykytczuk, N.C.S., Greer, C.W. & Whyte, L.G. (2012). Life at the wedge: the activity and diversity of Arctic ice wedge microbial communities. Astrobiology 12, 347360.Google Scholar
Wynn-Williams, D.D. & Edwards, H.G.M. (2000). Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial Antarctic habitats and Mars analogs. Icarus 144, 486503.Google Scholar
Zimov, S.A., Schuur, E.A.G. & Chapin, F.S. III (2007). Permafrost and the global carbon budget. Science 312, 16121613.CrossRefGoogle Scholar
Supplementary material: File

Laing supplementary material

Supplementary Figure 1

Download Laing supplementary material(File)
File 18.1 MB
Supplementary material: File

Laing supplementary material

Supplementary Figure 2

Download Laing supplementary material(File)
File 20 MB
Supplementary material: File

Laing supplementary material

Laing supplementary material 1

Download Laing supplementary material(File)
File 687.3 KB
Supplementary material: File

Laing supplementary material

Laing supplementary material 2

Download Laing supplementary material(File)
File 2.5 MB
Supplementary material: File

Laing supplementary material

Supplementary Figures 1-2

Download Laing supplementary material(File)
File 5.6 MB