Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T05:17:30.479Z Has data issue: false hasContentIssue false

Adsorption of nucleic acid bases on magnesium oxide (MgO)

Published online by Cambridge University Press:  22 October 2012

Teresa Fornaro
Affiliation:
INAF – Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy
John Robert Brucato*
Affiliation:
INAF – Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy
Sergio Branciamore
Affiliation:
INAF – Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy
Amaranta Pucci
Affiliation:
INAF – Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy

Abstract

The adsorption of organic molecules on mineral matrices might have played a fundamental role in processes that led to the emergence of life. We investigated the adsorption properties of the nucleobases adenine, cytosine, uracil and hypoxanthine on magnesium oxide (MgO), determining the single solute batch equilibrium adsorption isotherms. Langmuir-type isotherms were fitted to data, assuming a rapid reversible equilibration of adsorption, demonstrated effectively through desorption experiments. The Langmuir equilibrium adsorption constant K and the amount of the solute per unit of adsorbent mass necessary to complete the monolayer b were calculated. The results indicate that MgO is a good adsorbent for nucleobases (adenine > uracil > hypoxantine > cytosine), suggesting a role of metal oxides in concentrating biomolecules in prebiotic conditions that might have favoured the passage from geochemistry to biochemistry.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkins, P. & de Paul, J. (2002). Physical Chemistry, 7th edn. Oxford University Press, Oxford.Google Scholar
Barber, D.J. & Scott, E.R.D. (2002). Proc Natl Acad Sci USA 99, 65566561.CrossRefGoogle Scholar
Barks, H.L., Buckley, R., Grieves, G.A., Di Mauro, E., Hud, N.V. & Orlando, T.M. (2010). ChemBioChem. 11, 12401243.Google Scholar
Bebié, J. & Schoonen, M.A.A. (2000). Geochem. Trans. 8, DOI:10.1039/b005581f.Google Scholar
Bernal, J.D. (1951). The Physical Basis of Life. Routledge and Kegan Paul, London.Google Scholar
Brucato, J.R., Strazzulla, G., Baratta, G.A., Rotundi, A. & Colangeli, L. (2006). Orig. Life Evol. Biosph. 36(5–6), 451457.Google Scholar
Budavari, S. (1996). The Merck Index, 12th edn, Merck and Co. Inc., Rahway, NJ.Google Scholar
Cleaves, H.J. II, Jonsson, C.M., Jonsson, C.L., Sverjensky, D.A. & Hazen, R.M. (2010). Astrobiology 10(3), 311323.CrossRefGoogle Scholar
Cohn, C.A., Hansson, T.K., Larsson, H.S., Sowerby, S.J. & Holm, N.G. (2001). Astrobiology 1(4), 477480.CrossRefGoogle Scholar
Crick, F.H.C. (1968). J. Mol. Biol. 38, 367379.CrossRefGoogle Scholar
Cullen, D.C. & Sims, M.R. (2007). Life detection within planetary exploration: context for biosensor and related bioanalytical technologies. In Handbook of Biosensors and Biochips, ed. Marks, R.S., Cullen, D.C., Karube, I., Lowe, C.R. & Weetall, H.H., pp. 12371256. John Wiley and Sons, Chichester, UK.CrossRefGoogle Scholar
Dawson, R.M.C., Elliott, D.C., Elliott, W.H. & Jones, K.M. (1986). Data for Biochemical Research, 3rd edn, Oxford University Press, Oxford.Google Scholar
Direito, S.O.L., Marees, A. & Roeling, W.F.M. (2012). Fed. Eur. Microbiol. Soc. 81, 111123.Google Scholar
Downs, R.T. & Hazen, R.M. (2004). J. Mol. Catal. A: Chem. 216, 273285.Google Scholar
Edelwirth, M., Freund, J., Sowerby, S.J. & Heckl, W.M. (1998). Surf. Sci. 417, 201209.CrossRefGoogle Scholar
Ertem, G. (2004). Orig. Life Evol. Biosph. 34, 549570.CrossRefGoogle Scholar
Ferris, J.P. (1992). In Marine Hydrothermal Systems and the Origin of Life, ed. Holm, N.G., Kluwer, Dordrecht, The Netherlands.Google Scholar
Gates, B.C. (1992). Catalytic Chemistry, John Wiley and Sons Inc., New York.Google Scholar
Gibbs, D., Lohrmann, R. & Orgel, L.E. (1980). J. Mol. Evol. 15, 347354.CrossRefGoogle Scholar
Gilbert, W. (1986). Nature 319, 618.CrossRefGoogle Scholar
Hazen, R.M. (2006). Am. Mineral. 91, 17151729.Google Scholar
Hazen, R.M. & Sholl, D.S. (2003). Nature Mater. 2, 367374.CrossRefGoogle Scholar
Hazen, R.M. & Sverjensky, D.A. (2010). Cold Spring Harb. Perspect. Biol. 2, a002162.CrossRefGoogle Scholar
Hazen, R.M., Filley, T.R. & Goodfriend, G.A. (2001). Proc. Natl Acad. Sci. USA 98(10), 54875490.CrossRefGoogle Scholar
Heckl, W.M., Smith, D.P.E., Binnig, G., Klagges, H., Hänsch, T.W. & Maddocks, J. (1991). Proc. Natl Acad. Sci. USA 88, 80038005.CrossRefGoogle Scholar
Holm, N.G. (2012). Geobiology, 10(4), 269279.CrossRefGoogle Scholar
Kochetkov, N. & Budovskii, E.I. (1972). Organic Chemistry of Nucleic Acids, Plenum Press, New York.Google Scholar
Komiyama, M., Gu, M., Shimaguchi, T., Wu, H.M. & Okada, T. (1998). Appl. Phys. A: Mater. Sci. Process. 66, S635S637.Google Scholar
Lahav, N. (1999) Biogenesis: Theories of Life's Origin. Oxford University Press, New York, p. 259.CrossRefGoogle Scholar
Lahav, N. & Chang, S. (1976). J. Mol. Evol. 8, 357380.Google Scholar
Levy, M., Miller, S.L., Brinton, K. & Bada, J.L. (2000). Icarus 145, 609613.Google Scholar
Lorenz, M.G. & Wackernagel, W. (1994). Microbiol. Rev. 58, 563602.Google Scholar
Luther, A., Brandsch, R. & von Kiedrowski, G. (1998). Nature 396, 245248.Google Scholar
Miller, S.L. (1987). Cold Spring Harb. Symp. Quant. Biol. 52, 1727.CrossRefGoogle Scholar
Ming, D.W. et al. (2006). J. Geophys. Res. 111, E02S12 (doi: 10.1029/2005JE002560).Google Scholar
Parnell, J. et al. (2007). Astrobiology 7(4), 578604.Google Scholar
Peeters, Z., Quinn, R., Martins, Z., Sephton, M.A., Becker, L., van Loosdrecht, M.C.M., Brucato, J.R., Grunthaner, F. & Ehrenfreund, P. (2009). Int. J. Astrobiol. 8(4), 301315.CrossRefGoogle Scholar
Plekan, O., Feyer, V., Šutara, F., Skála, T., Švec, M., Cháb, V., Matolín, V. & Prince, K.C. (2007). Surf. Sci. 601, 19731980.CrossRefGoogle Scholar
Podlech, J. (2001). Cell. Mol. Life Sci. 58, 4460.Google Scholar
Pucci, A., Branciamore, S., Casarosa, M., Acqui, L.P.D. & Gallori, E. (2010). J. Cosmol. 10, 33983407.Google Scholar
Saladino, R., Crestini, C., Costanzo, G., Negri, R. & Di Mauro, E. (2001). Bioorg. Med. Chem. 9(5), 12491253.Google Scholar
Saladino, R., Ciambecchini, U., Crestini, C., Costanzo, G., Negri, R. & Di Mauro, E. (2003). ChemBioChem. 4(6), 514521.Google Scholar
Saladino, R., Crestini, C., Ciambecchini, U., Ciciriello, F., Costanzo, G. & Di Mauro, E. (2004). ChemBioChem. 5(11), 15581566.Google Scholar
Saladino, R., Crestini, C., Costanzo, G. & Di Mauro, E. (2005a). Top. Curr. Chem. 259, 2968.CrossRefGoogle Scholar
Saladino, R., Crestini, C., Neri, V., Brucato, J.R., Colangeli, L., Ciciriello, F., Di Mauro, E. & Costanzo, G. (2005b). ChemBioChem. 6, 17.Google Scholar
Saladino, R., Brucato, J.R., de Sio, A., Botta, G., Pace, E. & Gambicorti, L. (2011). Astrobiology 11, 815824.Google Scholar
Scappini, F., Casadei, F., Zamboni, R., Franchi, M., Gallori, E. & Monti, S. (2004). Int. J. Astrobiol. 3(1), 1719.CrossRefGoogle Scholar
Schoonen, M., Smirnov, A. & Cohn, C. (2004). Ambio 33(8), 539551.Google Scholar
Schramm, L.L. (2005). Emulsions, Foams, and Suspensions, Wiley-VCH, New York.Google Scholar
Sheina, G.G., Stepanian, S.G., Radchenko, E.D. & Blagoi, Yu. P. (1987). J. Mol. Struct. 158, 275292.Google Scholar
Shelley, D.C., Smith, E. & Morowitz, H.J. (2007). Bioorg. Chem. 35, 430443.Google Scholar
Shih, P., Pedersen, L.G., Gibbs, P.R. & Wolfenden, R. (1998). J. Mol. Biol. 280, 421430.Google Scholar
Sholl, D.S. & Gellman, A.J. (2009). AIChE J. 55(10), 24842490.Google Scholar
Singh, H.K., Saquib, M., Haque, M.M. & Muneer, M. (2007). J. Hazard. Mater. 142, 425430.CrossRefGoogle Scholar
Sowerby, S.J. & Heckl, W.M. (1998). Orig. Life Evol. Biosph. 28, 283310.Google Scholar
Sowerby, S.J. & Petersen, G.B. (1997). J. Electroanal. Chem. 433, 8590.CrossRefGoogle Scholar
Sowerby, S.J. & Petersen, G.B. (1999). Orig. Life Evol. Biosph. 29, 597614.CrossRefGoogle Scholar
Sowerby, S.J., Heckl, W.M. & Petersen, G.B. (1996). J. Mol. Evol. 43, 419424.CrossRefGoogle Scholar
Sowerby, S.J., Edelwirth, M. & Heckl, W.M. (1998). J. Phys. Chem. B 102, 59145922.Google Scholar
Sowerby, S.J., Stockwell, P.A., Heckl, W.M. & Petersen, G.B. (2000). Orig. Life Evol. Biosph. 30, 8199.CrossRefGoogle Scholar
Sowerby, S.J., Cohn, C.A., Heckl, W.M. & Holm, N.G. (2001a). Proc. Natl Acad. Sci. USA 98(3), 820822.Google Scholar
Sowerby, S.J., Mörth, C.-M. & Holm, N.G. (2001b). Astrobiology 1(4), 481487.Google Scholar
Sowerby, S.J., Petersen, G.B. & Holm, N.G. (2002). Orig. Life Evol. Biosph. 32, 3546.Google Scholar
Stotzky, J.V., Gallori, E. & Khanna, M. (1996). Molecular Microbial Ecology Manual, eds Akkermans, A.D.I., Van Elsas, J.D. & De Brujin, F.J., pp. 128. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
Tao, N.J., DeRose, J.A. & Lindsay, S.M. (1993). J. Phys. Chem. 97, 910919.Google Scholar
Tao, N.J. & Shi, Z. (1994). J. Phys. Chem. 98, 14641471.Google Scholar
Valocchi, A.J. (1985). Water Resour. Res. 21(6), 808820.Google Scholar
Wächtershauser, G. (1988). Proc. Natl Acad. Sci. USA 85, 11341135.Google Scholar
Winter, D. & Zubay, G. (1995). Orig. Life Evol. Biosph. 25, 6181.Google Scholar