Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T14:22:54.311Z Has data issue: false hasContentIssue false

What do we think life is? A simple illustration and its consequences

Published online by Cambridge University Press:  06 September 2013

William Bains*
Affiliation:
EAPS, MIT, Cambridge, MA, USA SENS Research Foundation Laboratory, Chemical Engineering and Biotechnology, Cambridge CB2 1QT, UK e-mail: [email protected]

Abstract

The conundrum of finding a ‘definition’ for life can be side-stepped by asking how people actually identify examples of life, and using this as the basis for life detection strategies. I illustrate how astrobiologists actually select things that are living from things that are not living with a simple exercise, and use this as the starting point to develop four characteristics that underlie their decisions: highly distinctive structure (physical or chemical), dynamic behaviour (physical or chemical), multiple instances of life forming a ‘natural group’ and that the structural and dynamic characteristics of the group are independent of the details of the substrate on which life is growing. I show that these all derive the role of a code in the dynamic maintenance and propagation of life. I argue that evolution is neither a useful nor a practical way of identifying life. I conclude with some specific ways that these general categories of the observable properties of life can be detected.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders, 4th edn, Text Revision (DSM-IV-TR). American Psychiatric Association, Arlington, VA, USA.Google Scholar
Anon (editorial) (2007). Meanings of ‘life’. Nature 447, 10311032.CrossRefGoogle Scholar
Arms, K. & Campbell, P.S. (1991). Biology: A Journey into Life. Sanders College Publishing, Madison, WI, USA.Google Scholar
Avery, O.T., MacLeod, C.M. & McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus Type III. J. Exp. Med. 79(2), 137158.Google Scholar
Baas-Becking, L.G.M. & Parks, G.S. (1927). Energy relations in the metabolism of autotrophic bacteria. Physiol. Rev. 7(1), 85106.CrossRefGoogle Scholar
Bains, W. (2004). Many chemistries could be used to build living systems. Astrobiology 4(2), 137167.CrossRefGoogle ScholarPubMed
Bains, W. (2013). Martian Methyl Chloride. A lesson in uncertainty. http://uk.arxiv.org/abs/1304.4429.Google Scholar
Bains, W. & Seager, S. (2012). A combinatorial approach to biochemical space: description and application to the redox distribution of metabolism. Astrobiology 12(3), 271281.CrossRefGoogle Scholar
Bedau, M.A. (2010). An Aristotelian account of minimal chemical life. Astrobiology 10(10), 10111020.CrossRefGoogle ScholarPubMed
Benner, S.A. (2010). Defining life. Astrobiology 10(10), 10211030.CrossRefGoogle ScholarPubMed
Benner, S.A., Ricardo, A. & Carrigan, M.A. (2004). Is there a common chemical model for life in the universe? Curr. Opin. Chem. Biol. 8(6), 672689.Google Scholar
Biemann, K., Oro, J., Orgel, L.E., Neir, A.O., Anderson, D.M., Simmonds, P.G., Flory, D., Diaz, A.V., Rushnek, D.R. & Biller, J.E. (1976). Search for organic and volatile inorganic compounds in the two surface samples from Chryse Planitia region of Mars. Science 194, 7276.CrossRefGoogle ScholarPubMed
Biemann, K. et al. (1977). The search for organic substances and inorganic volatile compounds in the surface of Mars. J. Geophys. Res. 82, 46414658.Google Scholar
Boesch, C. (2012). Wild Cultures. A Comparison Between Chimpanzee and Human Cultures. Cambridge University Press, Cambridge, UK.Google Scholar
Brooker, R., Widmaier, E., Graham, L. & Stirling, P. (2007). Biology. McGraw-Hill, New York, NY, USA.Google Scholar
Burke, M.K., Dunham, J.P., Shahrestani, P., Thirnton, K.R., Rose, M.R. & Long, A.D. (2010). Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature 467, 587590.CrossRefGoogle ScholarPubMed
Cady, S.L., Farmer, J.D., Grotzinnger, J.P., Schopf, J.W. & Steele, A. (2003). Morphological Biosignatures and the Search for Life on Mars. Astrobiology 3(2), 351368.CrossRefGoogle ScholarPubMed
Campbell, N.A., Reece, J.B., Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky, P.V. & Jackson, R.B. (2008). Biology, 8th edn. Pearson International, London, UK.Google Scholar
Capitant, E. & Laiacona, M. (2011). Facts and hypotheses relevant for contrasting animal and plant life semantics. A comment on Gainotti (2010). Cortex 47, 259264.Google Scholar
Carol, L. (1876). The Hunting of the Snark. MacMillan, London.Google Scholar
Chyba, C.F. & McDonald, G.D. (1995). The origin of life in the solar system: current issues. Annu. Rev. Earth Planet Sci. 23, 215249.CrossRefGoogle ScholarPubMed
Cleland, C.E. & Copley, S.D. (2005). The possibility of alternative microbial life on Earth. Int. J. Astrobiol. 4(3–4), 165173.Google Scholar
Conrad, P.G. & Nealson, K.H. (2001). A non-Earthcentric approach to life detection. Astrobiology 1(1), 1524.Google Scholar
Conrad, T.M., Leris, N.E. & Palsson, B.O. (2011). Microbial laboratory evolution in the era of genome-scale science. Mol. Syst. Biol. 7, http://www.nature.com/msb/journal/v7/n1/pdf/msb201142.pdf.Google Scholar
Cranford, J.L. (2012). From Dying Stars to the Birth of Life. Nottingham University press, Nottingham, UK.Google Scholar
Davies, P.C.W., Benner, S.A., Cleland, C.E., Lineweaver, C.H., McKay, C.P. & Wolfe-Simon, F. (2009). Signatures of a shadow biosphere. Astrobiology 9(2), 241249.Google Scholar
Dawkins, R. (2004). The Ancestor's Tale. A Pilgrimage to the Sawn of Life. Houghton Mifflin, Boston.Google Scholar
Deamer, D. (2010). Special collection of essays: what is life? Astrobiology 10(10), 10011002.CrossRefGoogle ScholarPubMed
Eigen, M. (1995). What will endure of 20th century biology? In What is Life? The Next 50 Years, ed. Murphy, M.P. & O'Neill, L.A.J., pp. 524. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
ExPasy (2010). Metabolic Map. Retrieved 7/1/2010, 2010, from http://www.expasy.ch/cgi-bin/show_thumbnails.pl.Google Scholar
Fry, I. (2009). Philosophical aspects of the origin of life problem: the emergence of life and the nature of science. In Exploring the Origin, Extent and Future of Life. Philosophical, Ethical and Theological Perspectives, ed. Bertka, C.M., pp. 6179. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Gale, J. (2009). Astrobiology of Earth. Emergence, Evolution and Future of Life on a Planet in Turmoil. Oxford University Press, Oxford.CrossRefGoogle Scholar
Golden, D.C., Ming, D.W., Morris, R.V., Brearley, A.J., Lauer, H.V., Treiman, A.H., Zolensky, M.E., Schwandt, C.S., Lofgren, G.E. & McKay, G.A. (2004). Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. Am. Mineral. 89(5–6), 681695.Google Scholar
Goodman, M.F. (2002). Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem. 71(1), 1750.Google Scholar
Gould, J.L. & Keeton, W.T. (1991). Biological Science, 6th edn. W. W. Norton and Company, New York.Google Scholar
Haldane, J.B.S. (1949). What is Life. Lindsay Drummond, London, UK.Google Scholar
Hamilton, G. (1845). Rudiments of Animal Physiology. William and Robert Chambers, Edinburgh, UK.Google Scholar
Hazen, R.M. (2009). Emergence and the experimental pursuit of the origin of life. In Exploring the Origin, Extent and Future of Life. Philosophical, Ethical and Theological Perspectives, ed. Bertka, C.M., pp. 2146. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Hitchcock, D.R. & Lovelock, J.E. (1967). Life detection by atmospheric analysis. Icarus 7, 149150.Google Scholar
Hoehler, T.M., Amend, J.P. & Shock, E.L. (2007). A ‘follow the energy’ approach for astrobiology. Astrobiology 7(6), 819823.Google Scholar
Irwin, D., Irwin, J. & Price, T. (2002). Ring species as bridges between microevolution and speciation. In Microevolution Rate, Pattern, Process, ed. Hendry, A.P. and Kinnison, M.T., pp. 223243. Springer, Netherlands, vol. 8.Google Scholar
Irwin, L.N. & Schulze-Makuch, D. (2011). Cosmic Biology: How Life Could Evolve on Other Worlds. Springer Praxis, Heidelberg, Germany.Google Scholar
Kawecki, T.J., Lenski, R.E., Ebert, D., Hollis, B., Olivieri, I. & Whitlock, M.C. (2012). Experimental evolution. Trends Ecol. Evol. 27(10), 547560.CrossRefGoogle ScholarPubMed
Kent, M. (2000). Advanced Biology. Oxford University Press, Oxford.Google Scholar
Kirkwood, T.B.L. & Holliday, R. (1979). The evolution of ageing and longevity. Proc. R. Soc. Lond. B, Biol. Sci. 205(1161), 531546.Google Scholar
Kolb, V.M. (2007). On the applicability of the Aristotelian principles to the definition of life. Int. J. Astrobiol. 6(1), 5157.Google Scholar
Lawrence, E. (ed.) (2008). Henderson's Dictionary of Biology, 14th edn. Benjamin Cummings. Pearson International, London, UK.Google Scholar
Lederberg, J. (1965). Signs of life: criterion-system of exobiology. Nature 207, 913.Google Scholar
Leitner, J.J. & Firneis, M.G. (2011). Defining life in a non-geocentric way. EPSC Abstracts 6, EPSC-DPS2011-1114.Google Scholar
Levin, G. (2009). Comment on “Stereo-specific glucose consumption may be used to distinguish between chemical and biological reactivity on Mars: a preliminary test on Earth”. Astrobiology 9(5), 503504.Google Scholar
Lineweaver, C.H. & Egan, C.A. (2008). Life, gravity and the second law of thermodynamics. Phys. Life Rev. 5, 225242.Google Scholar
Lovelock, J.E. (1965). A physical basis for life detection experiments. Nature 207, 568570.Google Scholar
Lovelock, J.E. (1975). Thermodynamics and the recognition of alien biospheres. Proc. R. Soc. Lond. B 189, 167 160 181.Google Scholar
Lu, Y. & Freeland, S.J. (2008). A quantitative investigation of the chemical space surrounding amino acid alphabet formation. J. Theor. Biol. 250(2), 349361.Google Scholar
Luisi, P.L. (1998). About various definitions of life. Orig. Life Evol. Biosph. 26, 613622.Google Scholar
Luisi, P.L. (2006). From Chemical Origins to Synthetic Biology. Cambridge University Press, Cambridge.Google Scholar
Machery, E. (2012). Why I stopped worrying about the definition of life… and why you should as well. Synthese 185, 145164.Google Scholar
Margulis, L. & Sagan, D. (2000). What is Life. Cambridge University Press, Cambridge, UK.Google Scholar
Mayr, E. (1982). The Growth of Biological Thought. Belknapp Press, Cambridge, MA.Google Scholar
Mayr, E. (1998). This is Biology. The science of the living world, Harvard University Press, Cambridge, USA.Google Scholar
McKay, D.S., Gibson, E.K.J., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. & Zare, R.N. (1996). Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924930.Google Scholar
McLean, F.C. (1938). Application of the law of chemical equilibrium (law of mass action) to biological problems. Physiol. Rev. 18(4), 495523.Google Scholar
Metzler, D.E. & Metzler, C.M. (2001). Biochemistry – the Chemical Reactions of Living Cells, 2nd edn, vol. 1. Harcourt Academic Press, San Diego.Google Scholar
Moor, J.H. (ed.) (2003). The Turing Test. Springer, Heidelberg, Germany.Google Scholar
Morris, S.C. (2002). Ancient animals or something else entirely? Science 298(5591), 5758.Google Scholar
Moss, H.E., Tyler, L.K. & Jennings, F. (1997). When leopards lose their spots: knowledge of visual properties in category-specific deficits for living things. Cogn. Neuropsychol. 14(6), 901950.Google Scholar
Narbonne, G.M. (2005). The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Ann. Rev. Earth Planet. Sci. 33, 421442.Google Scholar
Nealson, K. (2009). Taking the concept to the limit: uncultivatable bacteria and astrobiology. Microbiol. Monogr. 3, 195204.Google Scholar
Nealson, K. & Conrad, P.G. (1999). Life: past present and future. Phil. Trans. R. Soc. B 354, 19231939.Google Scholar
Oro, J. (2002). Historical understanding of life's beginnings. In The Beginnings of Biological Evolution, ed. Schopf, J.W., pp. 745. University of California Press, Berkeley, CA.Google Scholar
Parnell, J. et al. (2007). Searching for life on Mars: selection of molecular targets for ESA's Aurora ExoMars Mission. Astrobiology 7(4), 578604.Google Scholar
Purves, W.K., Sadava, D., Orians, G.H. & Heller, H.C. (2001). Life, the Science of Biology. Sinauer Associates, Sunderland, MA, USA.Google Scholar
Rappe, M., Connon, S.A., Vergin, K.L. & Giovannoni, S.J. (2002). Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630633.Google Scholar
Rasmussen, B., Bengtson, S., Fletcher, I.R. & McNaughton, N.J. (2002). Discoidal impressions and trace-like fossils more than 1200 million years old. Science 296(5570), 11121115.Google Scholar
Raven, P.H. & Johnson, G.B. (1992). Biology, 3rd edn. Mosby Year Book, London, UK.Google Scholar
Roberts, M. & Ingram, N. (2001). Biology, 2nd edn. Nelson Thornes, Cheltenham, UK.Google ScholarPubMed
Roberts, M., Reise, M. & Munger, G. (2000). Advanced Biology. Nelson, Cheltenham, UK.Google Scholar
Roberts, M.B.V. (1971). Biology: a Functional Approach. Thomas Nelson and Sons, Walton-on-Thames, Surrey, UK.Google Scholar
Ronald, E.M.A., Sipper, M. & Capcarrere, M.S. (1999). Design, observation, surprise! a test of emergence. Artif. Life 5, 225239.Google Scholar
Sagan, C. (1975). The recognition of extraterrestrial intelligence. Proc. R. Soc. Lond. B 189, 143153.Google Scholar
Scharf, C.A. (2008). Extrasolar Planets and Astrobiology. University Science Books, USA.Google Scholar
Schrödinger, E. (1944). What is Life? Cambridge University Press, Cambridge.Google Scholar
Schulze-Makuch, D. & Irvin, L.N. (2008). Life in the Universe, Springer, Heidelberg, Germany.Google Scholar
Seager, S., Schrenk, M. & Bains, W. (2012). An astrophysical view of Earth-based metabolic biosignature gases. Astrobiology 12, 6182.Google Scholar
Seilacher, A., Bose, P.K. & Pflüger, F. (1998). Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282(5386), 8083.Google Scholar
Steele, A. & Toporski, J. (2010). Life Detection, Philosophy and Criteria. Presentation Abstract, AbSciCon 2010, League City, Texas, USA, April 2010. http://www.lpi.usra.edu/meetings/abscicon2010/pdf/5673.pdf.Google Scholar
Sun, H.J., Saccomanno, V., Hedlund, B. & McKay, C.P. (2009). Stereo-specific glucose consumption may be used to distinguish between chemical and biological reactivity on Mars: a preliminary test on Earth. Astrobiology 9(5), 443446.Google Scholar
Thain, M. & Hickman, M. (eds) (1994). The Penguin Dictionary of Biology. Penguin, London, UK.Google Scholar
Thomas-Keprta, K.L., Bazylinski, D.A., Kirschvink, J.L., Clemett, S.J., McKay, S.S., Wentworth, S.J., Vali, H., Gibson, E.K. & Romanek, C.S. (2000). Elongated prismatic magnetic crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim. Cosmochim. Acta 64(23), 40494081.Google Scholar
Tirard, S., Morange, M. & Lazcano, A. (2010). The definition of life: a brief history of an elusive scientific endeavour. Astrobiology 10(10), 10031009.Google Scholar
Trifonov, E.N. (2012). Vocabulary of definitions of life suggests a definition. J. Biomol. Struct. Dynam. 29(2), 259266.CrossRefGoogle Scholar
Tsokolov, S.A. (2009). Why is the definition of life so elusive? Epistemological considerations. Astrobiology 9(4), 401412.Google Scholar
Tyler, L.K. & Moss, H.E. (2001). Towards a distributed account of conceptual knowledge. Trends Cognit. Psychol. 5(6), 244252.Google Scholar
Wallace, R.A., Sanders, G.P. & Ferl, R.J. (1997). Biology: the Science of Life, 4th edn. Harper, Collins.Google Scholar
Warmflash, D., Chu, H., Siefert, J. & Fox, G.R. (2009). Life detection using glucose and Tetrasaccharide Enantiomer Pairs. Astrobiology 9(3), 297303.Google Scholar
Warrington, E.K. & Shallice, T. (1984). Category specific semantic impairments. Brain 107(3), 829853.Google Scholar
Winzler, R.J. & Baumberger, J.P. (1938). The degradation of energy in the metabolism of yeast cells. J. Cell. Comp. Physiol. 12(2), 183211.Google Scholar