Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T00:41:37.978Z Has data issue: false hasContentIssue false

Use of non-thermal atmospheric plasmas to reduce the viability of Bacillus subtilis on spacecraft surfaces

Published online by Cambridge University Press:  16 January 2008

Andrew C. Schuerger
Affiliation:
Department of Plant Pathology, University of Florida, Bldg M6-1025, Space Life Sciences Lab, Kennedy Space Center, FL 32899; USA e-mail: [email protected]
Steven Trigwell
Affiliation:
ASRC Aerospace, ASRC-24, Electrostatics and Surface Physics Laboratory, Kennedy Space Center, FL 32899, USA e-mail: [email protected]
Carlos I. Calle
Affiliation:
NASA Electrostatics and Surface Physics Laboratory, Kennedy Space Center, FL 32899, USA e-mail: [email protected]

Abstract

Atmospheric pressure glow-discharge (APGD) plasmas have been proposed for sterilizing spacecraft surfaces prior to launch. The advantages of APGD plasmas for the sterilization of spacecraft surfaces include low temperatures at treatment sites, rapid inactivation kinetics of exposed microbial cells, physical degradation and removal of microbial cells, physical removal of organic biosignature molecules, and short exposure times for the materials. However, few studies have tested APGD plasmas on spacecraft materials for their effectiveness in both sterilizing surfaces and removal of microbial cells or spores. A helium (He)+oxygen (O2) APGD plasma was used to expose six spacecraft materials (aluminum 6061, polytetrafluoroethylene (PTFE), polycarbonate, Saf-T-Vu, Rastex, and Herculite 20) doped with spores of the common spacecraft contaminant, Bacillus subtilis, for periods of time up to 6 min. Results indicated that greater than six orders of magnitude reductions in viability were observed for B. subtilis spores in as short of time as 40 s exposure to the APGD plasmas. Spacecraft materials were not affected by exposures to the APGD plasmas. However, Saf-T-Vu was the only material in which spores of B. subtilis adhered more aggressively to plasma-treated coupons when compared to non-plasma treated coupons; all other materials exhibited no significant differences between plasma and non-plasma treated coupons. In addition, spores of B. subtilis were physically degraded by exposures to the plasmas beginning at the terminal ends of spores, which appeared to be ruptured after only 30 s. After 300 s, most bacteria were removed from aluminium coupons, and only subtle residues of bacterial secretions or biofilms remained. Results support the conclusion that APGD plasmas can be used as a prelaunch cleaning and sterilization treatment on spacecraft materials provided that the biocidal and cleaning times are shorter than those required to alter surface properties of materials.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bol'shakov, A.A., Cruden, B.A., Mogul, R., Rao, M.V.V.S., Sharma, S.P., Khare, B.N. & Meyyappan, M. (2004). Radio-frequency oxygen plasma as a sterilization source. AIAA J. 42, 823832.CrossRefGoogle Scholar
Choi, J.H., Han, I., Baik, H.K., Lee, M.H., Han, D.-W., Park, J.-C., Lee, I.-S., Song, K.M. & Lim, Y.S. (2006). Analysis of sterilization effect by pulsed dielectric barrier discharge. J. Electrostatics 64, 1722.CrossRefGoogle Scholar
Crawford, R.L. (2005). Microbial diversity and its relationship to planetary protection. Appl. Environ. Microbiol. 71, 41634168.CrossRefGoogle ScholarPubMed
Des Marais, D.J. et al. (2003). The NASA Astrobiology Roadmap. Astrobiology 3, 219235.CrossRefGoogle ScholarPubMed
Debus, A. (2006). Planetary protection: elements for cost minimization. Acta Astronautic 59, 10931100.CrossRefGoogle Scholar
Dillion, R.T., Gavin, W.R., Roark, A.L. & Trauth, C.A. (1973). Estimating the number of terrestrial organisms on the Moon. Space Life Sci. 4, 180199.Google Scholar
Efremov, N.M., Adamiak, B.Y., Blochin, V.I., Dadashev, S.J., Dmitriev, K.I., Gryaznova, O.P. & Jusbashev, V.F. (2000). Action of a self-sustained glow discharge in atmospheric pressure air on biological objects. IEEE Trans. Plasma Sci. 28, 238240.CrossRefGoogle Scholar
Faille, C., Jullien, C., Fontaine, F., Bellon-Fontaine, M.-N., Slomianny, C. & Benezech, T. (2002). Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity. Can. J. Microbiol. 48, 728738.CrossRefGoogle ScholarPubMed
Favero, M.S. (1971). Microbiologic assay of space hardware. Environ. Biol. Medicine 1, 2736.Google ScholarPubMed
Garate, E. & Evans, K. (1998). Atmospheric plasma induced sterilization and chemical neutralization. IEEE Trans. Plasma Sci. 26, 183189.Google Scholar
Garvin, J.B., Figueroa, O. & Naderi, F.M. (2001). NASA's new Mars Exploration Program: the trajectory of knowledge. Astrobiology 1, 439446.CrossRefGoogle ScholarPubMed
Gerenser, L.J. (1994). XPS studies of in situ plasma-modified polymer surfaces. In: Plasma Surface Modification of Polymer, ed. Strobel, M., Lyons, C. & Mittal, K., pp. 4364. VSP Publishing, Utrecht, The Netherlands.Google Scholar
Kelly-Wintenberg, K., Hodge, A., Montie, T.C., Deleanu, L., Sherman, D.M., Roth, J.R., Tsai, P.-Y. & Wadsworth, L. (1999). Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms. J. Vac. Sci. Technol. 17, 15391544.CrossRefGoogle Scholar
Kelly-Wintenberg, K., Montie, T.C., Brickman, C., Roth, J.R., Carr, A.K., Sorge, K., Wadsworth, L.C. & Tsai, P.-Y. (1998). Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma. J. Industrial Microbiol. Biotechnol. 20, 6974.CrossRefGoogle ScholarPubMed
Kempf, M.J., Chen, F., Kern, R. & Venkateswaran, K. (2005). Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from spacecraft assembly facility. Astrobiology 5, 391405.CrossRefGoogle ScholarPubMed
La Duc, M.T., Nicholson, W.L., Kern, R. & Venkateswaran, K. (2003). Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environmental Microbiology 5, 977985.CrossRefGoogle ScholarPubMed
Laroussi, M. (2002). Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, and prospects. IEEE Trans. Plasma Science 30, 14091415.CrossRefGoogle Scholar
Laroussi, M., Alexeff, I. & Kang, W.L. (2000). Biological decontamination by nonthermal plasmas. IEEE Trans. Plasma Science 28, 184188.CrossRefGoogle Scholar
Laroussi, M., Sayler, G.S., Glascock, B.B., McCurdy, B., Pearce, M.E., Bright, N.G. & Malott, C.M. (1999). Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure. IEEE Trans. Plasma Sci. 27, 3435.CrossRefGoogle Scholar
Lerouge, S., Wertheimer, M.R., Marchand, R., Tabrizian, M. & Yahia, L. (2000). Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization. J. Biomed. Mater. Res. 51, 128135.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Li, H., Belkind, A., Jansen, F. & Orban, Z. (1997). An in situ XPS study of oxygen plasma cleaning of aluminum surfaces. Surface Coatings Technol. 92, 171177.CrossRefGoogle Scholar
Mogul, R., Bol'shakov, A.A., Chan, S.L., Stevens, R.M., Khare, B.N., Meyyappan, M. & Trent, J.D. (2003). Impact of low-temperature plasmas on Deinococcus radiodurans and biomolecules. Biotechnol. Prog. 19, 776783.CrossRefGoogle ScholarPubMed
Moisan, M., Barbeau, J., Crevier, M.C., Pelletier, J., Philip, N. & Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 74, 349358.CrossRefGoogle Scholar
Morra, A., Occhiello, E. & Garbassi, F. (1990). Surface characterization of plasma-treated PTFE. Surf. Interface. Anal. 16, 412417.CrossRefGoogle Scholar
Morrison, D. (2001). The NASA Astrobiology Program. Astrobiology 1, 313.CrossRefGoogle ScholarPubMed
Newcombe, D.A., Schuerger, A.C., Benardini, J.N., Dickinson, D., Tanner, R. and Venkateswaran, K. (2005). Survival of spacecraft-associated microorganisms under simulated Martian UV irradiation. Appl. Environ. Microbiol. 71, 81478156.CrossRefGoogle ScholarPubMed
Panikov, N.S., Paduraru, S., Crowe, R., Ricatto, P.J., Christodoulatos, C. & Becker, K. (2002). Destruction of Bacillus subtilis cells using an atmopsheric-pressure capillary plasma electrode discharge. IEEE Trans. Plasma Sci. 30, 14241427.CrossRefGoogle Scholar
Pflug, I.J. (1971). Sterilization of space hardware. Environ. Biol. Med. 1, 6381.Google ScholarPubMed
Philip, N., Saoudi, B., Crevier, M.C., Moisan, M., Barbeau, J. & Pelletier, J. (2002). The respective roles of UV photons and Oxygen atoms in plasma sterilization at reduced gas pressure: The case of N2–O2 mixtures. IEEE Trans. Plasma Sci. 30, 14291435.CrossRefGoogle Scholar
Puleo, J.R., Fields, N.D., Bergstrom, S.L., Oxborrow, G.S., Stabekis, P.D. & Koukol, R.C. (1977). Microbiological profiles of the Viking spacecraft. Appl. Environ. Microbiol. 33, 379384.CrossRefGoogle ScholarPubMed
Roth, J.R., Sherman, D.M., Gadri, R.B., Karakaya, F., Chen, S., Monite, T.C., Kelly-Wintenberg, K. & Tsai, P.-Y. (2000). A remote exposure reactor (RER) for plasma processing and sterilization by plasma active species at one atmosphere. IEEE Trans. Plasma Sci. 28, 5663.CrossRefGoogle Scholar
Rummel, J.D. (1989). Planetary protection policy overview and application to future missions. Adv. Space Res. 9, 181184.CrossRefGoogle ScholarPubMed
Schuerger, A.C. (2004). Microbial ecology of the surface exploration of Mars with human-operated vehicles. In Martian Expedition Planning (American Astronautical Society Publication AAS 03-322), ed Cockell, C.S., pp. 363386. Univelt Publishers, Santa Barbara, CA.Google Scholar
Schuerger, A.C., Mancinelli, R.L., Kern, R.G., Rothschild, L.J. & McKay, C.P. (2003). Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated Martian environments: implications for the forward contamination of Mars. Icarus 165, 253276.CrossRefGoogle ScholarPubMed
Schuerger, A.C., Richards, J.T., Newcombe, D.A. & Venkateswaran, K. (2006). Rapid inactivation of seven Bacillus spp. under simulated Mars UV irradiation. Icarus 181, 5262.CrossRefGoogle Scholar
Sharma, R., Trigwell, S., Mazumder, M.K. & Sims, R.A. (2001). Modification of electrostatic properties of polymer powders by atmospheric pressure plasma treatment. In Polymer Surface Modification: Relevance to Adhesion, ed. Mittal, K.L., vol. 3, pp. 2537. VSP Publishing, Utretch, The Netherlands.Google Scholar
Shenton, M.J. & Stevens, G.C. (2001). Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments. J. Phys. D: Appl. Phys. 34, 27612768.CrossRefGoogle Scholar
Taylor, G.R. (1974). Space microbiology. Ann. Rev. Microbiol. 28, 121137.CrossRefGoogle ScholarPubMed
Venkateswaran, K., Chung, S., Allton, J.H. & Kern, R.G. (2004). Evaluation of various cleaning methods to remove Bacillus spores from spacecraft hardware materials. Astrobiology 4, 377390.Google ScholarPubMed
Venkateswaran, K., Satomi, M., Chung, S., Kern, R., Koukol, R., Basic, C. & White, D. (2001). Molecular microbial diversity of a spacecraft assembly facility. System. Appl. Microbiol. 24, 311320.CrossRefGoogle ScholarPubMed