Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T06:12:00.230Z Has data issue: false hasContentIssue false

Testing the preservation of biomarkers during experimental maturation of an immature kerogen

Published online by Cambridge University Press:  04 April 2016

H. Mißbach*
Affiliation:
Department of Geobiology, Geoscience Centre, Georg-August-University Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
J.-P. Duda
Affiliation:
Department of Geobiology, Geoscience Centre, Georg-August-University Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany ‘Origin of Life’ Group, Göttingen Academy of Sciences and Humanities, Theaterstraße 7, 37073 Göttingen, Germany
N.K. Lünsdorf
Affiliation:
Department of Sedimentology and Environmental Geology, Geoscience Centre, Georg-August-University Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
B.C. Schmidt
Affiliation:
Department of Experimental and Applied Mineralogy, Geoscience Centre, Georg-August-University Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
V. Thiel
Affiliation:
Department of Geobiology, Geoscience Centre, Georg-August-University Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany

Abstract

Lipid biomarkers have been extensively applied for tracing organisms and evolutionary processes through Earth's history. They have become especially important for the reconstruction of early life on Earth and, potentially, for the detection of life in the extraterrestrial realm. However, it is not always clear how exactly biomarkers reflect a paleoecosystem as their preservation may be influenced by increasing temperatures (T) and pressures (P) during burial. While a number of biomarker indices reflecting thermal maturity have been established, it is often less well constrained to which extent biomarker ratios used for paleoreconstruction are compromised by T and P processes. In this study we conducted hydrous pyrolysis of Green River Shale (GRS) kerogen in gold capsules for 2–2400 h at 300°C to assess the maturation behaviour of several compounds used as life tracers and for the reconstruction of paleoenvironments (n-alkanes, pristane, phytane, gammacerane, steranes, hopanes and cheilanthanes). Lignite samples were maturated in parallel with the GRS kerogen to obtain exact vitrinite reflectance data at every sampling point. Our experiment confirms the applicability of biomarker-based indices and ratios as maturity indicators (e.g. total cheilanthanes/hopanes ratio; sterane and hopane isomerization indices). However, several biomarker ratios that are commonly used for paleoreconstructions (e.g. pristane/phytane, pristane/n-C17, phytane/n-C18 and total steranes/hopanes) were considerably affected by differences in the thermal degradation behaviour of the respective compounds. Short-term experiments (48 h) performed at 400°C also revealed that biomarkers >C15 (especially steranes and hopanes) and ‘biological’ chain length preferences for n-alkanes are vanished at a vitrinite reflectance between 1.38 and 1.83% RO. Our data highlight that ‘thermal taphonomy’ effects have to be carefully considered in the interpretation of biomarkers in ancient rocks and, potentially, extraterrestrial materials.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, M. & George, S.C. (2004). Changes in the molecular composition of crude oils during their preparation for GC and GC–MS analyses. Org. Geochem. 35, 137155.Google Scholar
Alexander, R., Kagi, R.I. & Woodhouse, G.W. (1981). Geochemical correlation of Windalia oil and extracts of Winning Group (Cretaceous) potential source rocks, Barrow Subbasin, Western Australia. AAPG Bull. 65, 235250.Google Scholar
Aquino Neto, F.R., Trendel, J.M., Restle, A., Connan, J. & Albrecht, P.A. (1981). Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. Adv. Org. Geochem. 10, 659667.Google Scholar
Blumenberg, M., Thiel, V., Riegel, W., Kah, L.C. & Reitner, J. (2012). Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania. Precambrian Res. 196–197, 113127.Google Scholar
Blumenberg, M., Thiel, V. & Reitner, J. (2015). Organic matter preservation in the carbonate matrix of a recent microbial mat – Is there a ‘mat seal effect’? Org. Geochem. 87, 2534.CrossRefGoogle Scholar
Blumer, M., Guillard, R. & Chase, T. (1971). Hydrocarbons of marine phytoplankton. Marine Biol. 8, 183189.Google Scholar
Bray, E.E. & Evans, E.D. (1961). Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22, 215.CrossRefGoogle Scholar
Brocks, J.J., Logan, G.A., Buick, R. & Summons, R.E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science 285, 10331036.CrossRefGoogle ScholarPubMed
Brocks, J.J. & Summons, R.E. (2003). Biomarkers for early life. In Biogeochemistry, Vol. 8, ed. Schlesinger, W.H., pp. 63115. Elsevier, Oxford.Google Scholar
Brocks, J.J., Buick, R., Logan, G.A. & Summons, R.E. (2003a). Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim. Cosmochim. Acta 67, 42894319.Google Scholar
Brocks, J.J., Love, G.D., Snape, C.E., Logan, G.A., Summons, R.E. & Buick, R. (2003b). Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis. Geochim. Cosmochim. Acta 67, 15211530.CrossRefGoogle Scholar
Brocks, J.J. & Pearson, A. (2005). Building the biomarker tree of life. Rev. Mineral. Geochem. 59, 233258.Google Scholar
Brocks, J.J., Jarrett, A.J.M., Sirantoine, E., Kenig, F., Moczydłowska, M., Porter, S. & Hope, J. (2016). Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129149.Google Scholar
Burnham, A.K., Clarkson, J.E., Singleton, M.F., Wong, C.M. & Crawford, R.W. (1982). Biological markers from Green River kerogen decomposition. Geochim. Cosmochim. Acta 46, 12431251.CrossRefGoogle Scholar
Burnham, A.K. & Singleton, M.F. (1983). High-pressure pyrolysis of Green River oil shale. In ACS Symposium Series (United States), Lawrence Livermore National Lab., CA.Google Scholar
Collister, J.W., Summons, R.E., Lichtfouse, E. & Hayes, J.M. (1992). An isotopic biogeochemical study of the Green River oil shale. Org. Geochem. 19, 265276.Google Scholar
De Grande, S.M.B., Aquino Neto, F.R. & Mello, M.R. (1993). Extended tricyclic terpanes in sediments and petroleums. Org. Geochem. 20, 10391047.Google Scholar
De Leeuw, J.W., Versteegh, G.J.M. & van Bergen, P.F. (2006). Biomacromolecules of algae and plants and their fossil analogues. In Plants and Climate Change, Vol. 41, ed. Rozema, J., Aerts, R. and Cornelissen, H., pp. 209233. Springer, The Netherlands.Google Scholar
Didyk, B.M., Simoneit, B.R.T., Brassell, S.C. & Eglinton, G. (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272, 216222.CrossRefGoogle Scholar
Duda, J.-P., Blumenberg, M., Thiel, V., Simon, K., Zhu, M. & Reitner, J. (2014). Geobiology of a palaeoecosystem with Ediacara-type fossils: the Shibantan Member (Dengying Formation, South China). Precambrian Res. 255 (Part 1), 4862.Google Scholar
Durand, B. (1980). Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In Kerogen, ed. Durand, B., pp. 1334. Éditions Technip, Paris.Google Scholar
Durand, B. & Nicaise, G. (1980). Procedures for kerogen isolation. In Kerogen, ed. Durand, B., pp. 3553. Éditions Technip, Paris.Google Scholar
Eglinton, G. & Hamilton, R.J. (1967). Leaf epicuticular waxes. Science 156, 13221335.Google Scholar
Eglinton, T.I. & Douglas, A.G. (1988). Quantitative study of biomarker hydrocarbons released from kerogens during hydrous pyrolysis. Energy Fuels 2, 8188.Google Scholar
Eickhoff, M., Birgel, D., Talbot, H.M., Peckmann, J. & Kappler, A. (2013). Oxidation of Fe(II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium Rhodopseudomonas palustris strain TIE-1. Geobiology 11, 268278.Google Scholar
Evans, R.J. & Felbeck, G.T. Jr. (1983). High temperature simulation of petroleum formation—I. The pyrolysis of Green River Shale. Org. Geochem. 4, 135144.Google Scholar
Flannery, E.N. & George, S.C. (2014). Assessing the syngeneity and indigeneity of hydrocarbons in the ~1.4 Ga Velkerri Formation, McArthur Basin, using slice experiments. Org. Geochem. 77, 115125.CrossRefGoogle Scholar
French, K.L., Hallmann, C., Hope, J.M., Schoon, P.L., Zumberge, J.A., Hoshino, Y., Peters, C.A., George, S.C., Love, G.D. & Brocks, J.J. (2015). Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl. Acad. Sci. 112, 59155920.Google Scholar
Goossens, H., de Leeuw, J.W., Schenck, P.A. & Brassell, S.C. (1984). Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312, 440442.Google Scholar
Goossens, H., de Lange, F., de Leeuw, J.W. & Schenck, P.A. (1988a). The Pristane Formation Index, a molecular maturity parameter. Confirmation in samples from the Paris Basin. Geochim. Cosmochim. Acta 52, 24392444.Google Scholar
Goossens, H., Due, A., de Leeuw, J.W., van de Graaf, B. & Schenck, P.A. (1988b). The Pristane Formation Index, a new molecular maturity parameter. A simple method to assess maturity by pyrolysis/evaporation-gas chromatography of unextracted samples. Geochim. Cosmochim. Acta 52, 11891193.Google Scholar
Gruber, W. & Sachsenhofer, R.F. (2001). Coal deposition in the Noric Depression (Eastern Alps): raised and low-lying mires in Miocene pull-apart basins. Int. J. Coal Geol. 48, 89114.CrossRefGoogle Scholar
Hallmann, C., Kelly, A.E., Gupta, S.N. & Summons, R.E. (2011). Reconstructing deep-time biology with molecular fossils. In Quantifying the Evolution of Early Life, ed. Laflamme, M., Schiffbauer, J.D. & Dornbos, S.Q., pp. 355401. Springer, Netherlands, Dordrecht.Google Scholar
Harvey, H.R. & McManus, G.B. (1991). Marine ciliates as a widespread source of tetrahymanol and hopan-3β-ol in sediments. Geochim. Cosmochim. Acta 55, 33873390.Google Scholar
Hedges, J.I. & Keil, R.G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81115.Google Scholar
Hieshima, G.B. & Pratt, L.M. (1991). Sulfur/carbon ratios and extractable organic matter of the Middle Proterozoic Nonesuch Formation, North American Midcontinent rift. Precambrian Res. 54, 6579.Google Scholar
Hoffmann, C.F., Foster, C.B., Powell, T.G. & Summons, R.E. (1987). Hydrocarbon biomarkers from Ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917. Geochim. Cosmochim. Acta 51, 26812697.CrossRefGoogle Scholar
Horsfield, B. et al. (1994). Organic geochemistry of freshwater and alkaline lacustrine sediments in the Green River Formation of the Washakie Basin, Wyoming, U.S.A. Org. Geochem. 22, 415440.Google Scholar
Huizinga, B.J., Aizenshtat, Z.A. & Peters, K.E. (1988). Programmed pyrolysis-gas chromatography of artificially matured Green River kerogen. Energy Fuels 2, 7481.Google Scholar
Jacobson, S.R., Hatch, J.R., Teerman, S.C. & Askin, R.A. (1988). Middle ordovician organic matter assemblages and their effect on ordovician-derived oils: GEOLOGIC NOTE. AAPG Bull. 72, 10901100.Google Scholar
Kennedy, M.J., Pevear, D.R. & Hill, R.J. (2002). Mineral surface control of organic carbon in black shale. Science 295, 657660.CrossRefGoogle ScholarPubMed
Killops, S.D. & Killops, V.J. (2005). Introduction to Organic Geochemistry. Blackwell Publishing Ltd, Oxford.Google Scholar
Kleemann, G., Poralla, K., Englert, G., Kjøsen, H., Liaaen-Jensen, S., Neunlist, S. & Rohmer, M. (1990). Tetrahymanol from the phototrophic bacterium Rhodopseudomonas palustris: first report of a gammacerane triterpene from a prokaryote. Microbiology 136, 25512553.Google Scholar
Koopmans, M.P., de Leeuw, J.W. & Sinninghe Damsté, J.S. (1997). Novel cyclised and aromatised diagenetic products of β-carotene in the Green River Shale. Org. Geochem. 26, 451466.Google Scholar
Larter, S.R., Solli, H., Douglas, A.G., de Lange, F. & de Leeuw, J.W. (1979). Occurrence and significance of prist-1-ene in kerogen pyrolysates. Nature 279, 405408.Google Scholar
Le Bayon, R., Buhre, S., Schmidt, B.C. & Ferreiro Mählmann, R. (2012). Experimental organic matter maturation at 2 kbar: heat-up effect to low temperatures on vitrinite reflectance. Int. J. Coal Geol. 92, 4553.CrossRefGoogle Scholar
Love, G.D., Snape, C.E., Carr, A.D. & Houghton, R.C. (1995). Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. Org. Geochem. 23, 981986.Google Scholar
Love, G.D., Stalvies, C., Grosjean, E., Meredith, W. & Snape, C. (2008). Analysis of molecular biomarkers covalently bound within Neoproterozoic sedimentary kerogen. In From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century. Paleontological Society Papers, Vol. 14, ed. Kelley, P.H. & Bambach, R.K., pp. 6783. The Paleontological Society, Columbus, Ohio.Google Scholar
Love, G.D. et al. (2009). Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457, 718721.Google Scholar
Luo, G., Hallmann, C., Xie, S., Ruan, X. & Summons, R.E. (2015). Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation. Geochim. Cosmochim. Acta 151, 150167.CrossRefGoogle Scholar
Mango, F.D. (1996). Transition metal catalysis in the generation of natural gas. Org. Geochem. 24, 977984.CrossRefGoogle Scholar
Mango, F.D. & Hightower, J. (1997). The catalytic decomposition of petroleum into natural gas. Geochim. Cosmochim. Acta 61, 53475350.Google Scholar
Meredith, W., Kelland, S.J. & Jones, D.M. (2000). Influence of biodegradation on crude oil acidity and carboxylic acid composition. Org. Geochem. 31, 10591073.CrossRefGoogle Scholar
Middelburg, J.J. & Meysman, F.J.R. (2007). Burial at Sea. Science 316, 12941295.Google Scholar
Moldowan, J.M., Seifert, W.K. & Gallegos, E.J. (1983). Identification of an extended series of tricyclic terpanes in petroleum. Geochim. Cosmochim. Acta 47, 15311534.Google Scholar
Monthioux, M. & Landais, P. (1989). Natural and artificial maturation of coal: non-hopanoid biomarkers. Chem. Geol. 77, 7185.Google Scholar
Naeher, S. & Grice, K. (2015). Novel 1H-Pyrrole-2,5-dione (maleimide) proxies for the assessment of photic zone euxinia. Chem. Geol. 404, 100109.Google Scholar
Norgate, C.M., Boreham, C.J. & Wilkins, A.J. (1999). Changes in hydrocarbon maturity indices with coal rank and type, Buller Coalfield, New Zealand. Org. Geochem. 30, 9851010.CrossRefGoogle Scholar
Olcott Marshall, A. & Cestari, N.A. (2015). Biomarker analysis of samples visually identified as microbial in the Eocene Green River Formation: an analogue for Mars. Astrobiology 15, 770775.Google Scholar
Pawlowska, M.M., Butterfield, N.J. & Brocks, J.J. (2013). Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41, 103106.CrossRefGoogle Scholar
Peters, K.E., Moldowan, J.M. & Sundararaman, P. (1990). Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey Phosphatic and Siliceous members. Org. Geochem. 15, 249265.Google Scholar
Peters, K.E., Walters, C.C. & Moldowan, J.M. (2005a). The Biomarker Guide - Part I - Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, New York.Google Scholar
Peters, K.E., Walters, C.C. & Moldowan, J.M. (2005b). The Biomarker Guide - Part II - Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, New York.Google Scholar
Price, L.C. (1983). Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleogeothermometer. J. Petrol. Geol. 6, 537.Google Scholar
Price, L.C. (1993). Thermal stability of hydrocarbons in nature: limits, evidence, characteristics, and possible controls. Geochim. Cosmochim. Acta 57, 32613280.CrossRefGoogle Scholar
Requejo, A.G. (1994). Maturation of petroleum source rocks – II. Quantitative changes in extractable hydrocarbon content and composition associated with hydrocarbon generation. Org. Geochem. 21, 91105.Google Scholar
Rohmer, M., Bouvier-Nave, P. & Ourisson, G. (1984). Distribution of hopanoid triterpenes in prokaryotes. J. Gen. Microbiol. 130, 11371150.Google Scholar
Ruble, T.E., Lewan, M. & Philp, R. (2001). New insights on the Green River petroleum system in the Uinta basin from hydrous pyrolysis experiments. AAPG Bull. 85, 13331371.Google Scholar
Rullkötter, J., Meyers, P.A., Schaefer, R.G. & Dunham, K.W. (1986). Oil generation in the Michigan basin: a biological marker and carbon isotope approach. Org. Geochem. 10, 359375.Google Scholar
Schmidt, B.C., Blum-Oeste, N. & Flagmeier, J. (2013). Water diffusion in phonolite melts. Geochim. Cosmochim. Acta 107, 220230.Google Scholar
Schoell, M., Hwang, R.J., Carlson, R.M.K. & Welton, J.E. (1994). Carbon isotopic composition of individual biomarkers in gilsonites (Utah). Org. Geochem. 21, 673683.Google Scholar
Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., Köster, J., Schouten, S., Hayes, J.M. & de Leeuw, J.W. (1995). Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 59, 18951900.Google Scholar
Summons, R.E., Brassell, S.C., Eglinton, G., Evans, E., Horodyski, R.J., Robinson, N. & Ward, D.M. (1988). Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim. Cosmochim. Acta 52, 26252637.Google Scholar
Summons, R.E. (2014). The exceptional preservation of interesting and informative biomolecules. In Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers, Vol. 20, ed. Laflamme, M., Schiffbauer, J.D. & Darroch, S.A.F., pp. 217236. The Paleontological Society, Columbus, Ohio.Google Scholar
Ten Haven, H.L., de Leeuw, J.W., Rullkötter, J. & Sinninghe Damsté, J.S. (1987). Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature 330, 641643.Google Scholar
Ten Haven, H.L., Rohmer, M., Rullkötter, J. & Bisseret, P. (1989). Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochim. Cosmochim. Acta 53, 30733079.CrossRefGoogle Scholar
Tissot, B.P., Deroo, G. & Hood, A. (1978). Geochemical study of the Uinta Basin: formation of petroleum from the Green River formation. Geochim. Cosmochim. Acta 42, 14691485.Google Scholar
Tissot, B.P. & Welte, D.H. (1984). Petroleum Formation and Occurrence. Springer-Verlag, Berlin Heidelberg GmbH.Google Scholar
Treibs, A. (1936). Chlorophyll-und Häminderivate in organischen Mineralstoffen. Angewandte Chemie 49, 682686.Google Scholar
Tulipani, S. et al. (2015). Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning Basin, Western Australia: a biomarker and stable isotope approach. Gondwana Res. 28, 15001515.Google Scholar
Vandenbroucke, M. & Largeau, C. (2007). Kerogen origin, evolution and structure. Org. Geochem. 38, 719833.Google Scholar
Yamada, K., Ueno, Y., Yamada, K., Komiya, T., Han, J., Shu, D., Yoshida, N. & Maruyama, S. (2014). Molecular fossils extracted from the Early Cambrian section in the Three Gorges area, South China. Gondwana Res. 25, 11081119.Google Scholar