Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T19:18:31.773Z Has data issue: false hasContentIssue false

Self-assembly of tholins in environments simulating Titan liquidospheres: implications for formation of primitive coacervates on Titan

Published online by Cambridge University Press:  15 May 2013

Jun Kawai
Affiliation:
Department of Chemistry and Biotechnology, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan e-mail: [email protected]
Seema Jagota
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
Takeo Kaneko
Affiliation:
Department of Chemistry and Biotechnology, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan e-mail: [email protected]
Yumiko Obayashi
Affiliation:
Department of Chemistry and Biotechnology, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan e-mail: [email protected]
Yoshitaka Yoshimura
Affiliation:
Department of Life Science, Tamagawa University, Machida, Tokyo 194-8600, Japan
Bishun N. Khare
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
David W. Deamer
Affiliation:
Jack Baskin School of Engineering, University of California, Santa Cruz 95064-1077, USA
Christopher P. McKay
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
Kensei Kobayashi
Affiliation:
Department of Chemistry and Biotechnology, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan e-mail: [email protected]

Abstract

Titan, the largest satellite of Saturn, has a thick atmosphere containing nitrogen and methane. A variety of organic compounds have been detected in the atmosphere, most likely produced when atmospheric gases are exposed to ultraviolet light, electrons captured by the magnetosphere of Saturn and cosmic rays. The Cassini/Huygens probe showed that the average temperature on the surface of Titan is 93.7 K, with lakes of liquid ethane and methane. Sub-surface mixtures of liquid ammonia and water may also be present. We have synthesized complex organic compounds (tholins) by exposing a mixture of nitrogen and methane to plasma discharges, and investigated their interactions with several different liquids that simulate Titan's liquidosphere. We found that coacervates formed when tholins were extracted in non-polar solvents followed by exposure to aqueous ammonia solutions. The results suggest that coacervates can self-assemble in Titan's liquidosphere which have the potential to undergo further chemical evolution. Similar processes are likely to occur in the early evolution of habitable planets when tholin-like compounds undergo phase separation into microscopic structures dispersed in a suitable aqueous environment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, E. & Grevesse, N. (1989). Geochem. Cosmochim. Acta 53, 197214.Google Scholar
Anders, E., Hayatsu, R. & Studier, M.H. (1973). Science 182, 781790.CrossRefGoogle Scholar
Apel, C.L., Deamer, D.W. & Mautner, M.N. (2002). Biochem. Biophys. Acta 1559, 19.Google Scholar
Brown, R.H., Soderblom, L.A., Soderblom, J.M., Clark, R.N., Jaumann, R., Barnes, J.W., Sotin, C., Buratti, B., Baines, K.H. & Nicholson, P.D. (2008). Nature 454, 607610.Google Scholar
Carrasco, N. et al. (2009). J. Phys. Chem. A 113, 11 19511 203.CrossRefGoogle Scholar
Coll, P., Coscia, D., Smith, N., Gazeau, M.C., Ramõrez, S.I., Cernogor, G., Israel, G. & Raulin, F. (1999). Planet. Space Sci. 47, 13311340.Google Scholar
Deamer, D.W. & Pashley, P.M. (1989). Orig. Life Evol. Biosph. 19, 2138.Google Scholar
Ehrenfreund, P., Boon, J.J., Commandeur, J., Sagan, C., Thompson, W.R. & Khare, B.N. (1995). Atfv. Space Res. 15(3), 335342.Google Scholar
Egami, F. (1974). J. Mol. Evol. 4(2), 113120.CrossRefGoogle Scholar
Engel, S., Lunine, J.I. & Norton, D.L. (1994). J. Geophys. 99, 37453752.Google Scholar
Fortes, A.D. (2000). Icarus 146, 444452.Google Scholar
Fox, S.W., Harada, K., Woods, K.R. & Windsor, C.R. (1963). Arch. Biochem. 102(3), 439445.CrossRefGoogle Scholar
Fulchignoni, M. et al. (2005). Nature 438, 785791.Google Scholar
Grasset, O., Sotin, C. & Deschamps, F. (2000). Planet. Space Sci. 48, 617636.CrossRefGoogle Scholar
Griffith, C.A., Lora, J.M., Turner, J., Penteado, P.F., Brown, R.H., Tomasko, M.G., Doose, L. & See, C. (2012). Nature 237, 486.Google Scholar
Hanel, R. et al. (1981). Science 212, 192200.Google Scholar
He, C., Lin, G., Upton, K.T., Imanaka, H., Mark, A. & Smith, M.A. (2012a). J. Phys. Chem. 116, 47514759.Google Scholar
He, C., Lin, G., Upton, K.T., Imanaka, H., Mark, A. & Smith, M.A. (2012b). J. Phys. Chem. 116, 47604767.Google Scholar
Hodyss, R., McDonald, G., Sarker, N., Smith, M.A., Beauchamp, P.M. & Beauchamp, J.L. (2004). Icarus 171, 525530.Google Scholar
Horst, S.M. et al. (2012). Astrobiology 12, 9.Google Scholar
Imanaka, H., Khare, B.N., Elsila, J.E., Bakes, E.L.O., McKay, C.P., Cruikshank, D.P., Sugita, S., Matsui, T. & Zare, R.N. (2004). Icarus 168, 344366.CrossRefGoogle Scholar
Israel, G. et al. (2005). Nature 438, 796799.CrossRefGoogle Scholar
Jones, T.D. & Lewis, J.S. (1987). Icarus 72, 381398.Google Scholar
Kawai, J., Jagota, S., Kaneko, T., Obayashi, Y., Yoshimura, Y., Khare, B.N., Deamer, D.W., McKay, C.P. & Kobayashi, K. (2013). Int. J. Astrobiol. 12.Google Scholar
Khare, B.N., Sagan, C., Ogino, H., Nagy, B., Er, C., Schram, K.H. & Arakawa, E.T. (1986). Icarus 68, 176184.Google Scholar
Krauskopf, K.B. & Bird, D.K. (1995). Introduction to Geochemistry, 3rd edn. McGraw-Hill, New York.Google Scholar
Kunde, V.G., Aikin, A.C., Hanel, R.A., Jennings, D.E., Maguire, W.C. & Samuelson, R.E. (1981). Nature 292, 686688.CrossRefGoogle Scholar
Lindal, G.F., Wood, G.E., Hotz, H.B., Sweetnam, D.N., Eshelman, V.R. & Tyler, G.L. (1983). Icarus 32, 413430.Google Scholar
Lorenz, R.D. (1994). Planet. Space Sci. 42(1), l4.Google Scholar
Lunine, J.I. & Atreya, S.K. (2008). Nat. Geosci. 1, 159164.Google Scholar
Maguire, W.C., Hanel, R.A., Jennings, D.E., Kunde, V.G. & Samuelson, R.E. (1981). Nature 292, 683686.Google Scholar
McGuigan, M., Waite, J.H., Imanaka, H. & Sacks, R.D. (2006). J. Chromatogr. A 1132, 280288.Google Scholar
McKay, C.P. (1996). Space Sci. 44, 741747.Google Scholar
Nguyen, M.-J., Raulin, F., Coll, P., Derenne, S., Szopa, C., Cernogora, G., Israe, G. & Bernard, J.-M. (2008). Adv. Space Res. 42, 4853.Google Scholar
Neish, C.D., Somogyi, Á., Imanaka, H., Lunine, J.I. & Smith, M.A. (2008). Astrobiology 8(2), 273287.Google Scholar
Neish, C.D., Somogyi, Á., Lunine, J.I. & Smith, M.A. (2009). Icarus 201, 412421.Google Scholar
Neish, C.D., Somogyi, Á., Lunine, J.I. & Smith, M.A. (2010). Astrobiology 10(3), 337347.Google Scholar
Nelson, R.M. et al. (2009). Icarus 199, 429441.Google Scholar
O'Brien, D.P., Lorenz, R.D. & Lunine, J.I. (2005). Icarus 173, 243253.CrossRefGoogle Scholar
Oparin, A.I. (1957). Origins of life on Earth, pp. 495. Oliver and Boyd, Edinburgh.Google Scholar
Oparin, A.I., Orlovskii, A.F., Bukhlaeva, V.I.A. & Gladilin, K.L. (1976). Dokl. Akad. Nauk SSSR 226, 972974.Google Scholar
Riddick, J.A. & Bunger, W.B. (1970). Techniques of Chemistry Volume II, Organic Solvents Physical Properties and Method of Purification, 3rd edn. Wiley-Interscience, New York.Google Scholar
Sagan, C. & Khare, B.N. (1979). Nature 277, 102107.CrossRefGoogle Scholar
Sagan, C., Khare, B.N., Thompson, W.R., McDonald, G.D., Wing, M.R., Bada, J.L., Vo-Dihn, T. & Rakawa, E.T. (1993). Astrophys. J. 414, 399405.Google Scholar
Samuelson, R.E., Hanel, R.A., Kunde, V.G. & Maguire, W.C. (1981). Nature 292, 688693.CrossRefGoogle Scholar
Sarker, N., Somogy, A., Lunine, J.I. & Smith, M.A. (2003). Astrobiology 3, 719726.Google Scholar
Schulze-Makuch, D., Haque, S., de Sousa Anto, M.R., Hosein, R., Song, Y.C., Yang, J., Zaikova, E., Guinan, D.E., Lehto, H.J. & Hallam, S.J. (2011). Astrobiology 11(3), 241258.CrossRefGoogle Scholar
Smith, J.K. & Kaplan, J.R. (1970). Science 167(3923), 13671370.Google Scholar
Somogyi, A., Oh, C., Smith, M.A. & Lunine, J.I. (2005). J. Am. Soc. Mass Spectrom 16, 850859.Google Scholar
Stofan, E.R. et al. (2007). Nature 445, 6164.Google Scholar
Studier, M.H., Hayatsu, R. & Anders, E. (1968). Geochim. Cosmochim. Acta 32(2), 151173.Google Scholar
Szopa, C., Cernogora, G., Boufendi, L., Correia, J.-J. & Coll, P. (2006). Planet. Space Sci. 54(4), 394404.Google Scholar
Takai, K., Moser, D.P., Onstott, T.C., Spoelstra, N., Pfiffner, S.M., Dohnalkova, A. & Fredrickson, J.K. (2001). Int. J. Syst. Evol. Microbiol. 51, 12451256.CrossRefGoogle Scholar
Tobie, G., Grasset, O., Lunine, J.I., Mocquet, A. & Sotin, C. (2005). Icarus 175, 496502.Google Scholar
Trainer, M.G., Pavlov, A.A., DeWitt, H.L., Jimenez, J.L., McKay, C.P., Toon, O.B. & Tolbert, M.A. (2006). PNAS 103(48), 1803518042.Google Scholar
Wilson, E.H. & Atreya, S.K. (2003). Planet. Space Sci. 51, 10171033.Google Scholar
Yanagawa, H. & Egami, F. (1980). Origin of life. In Proc. 3rd ISSOL Meeting and 6th ICOL Meeting, Jerusalem, Israel, 22–27 June, 1980.Google Scholar
Yung, Y.L., Allen, M. & Pinto, J.P. (1984). Astrophys. J. Suppl. 292, 683686.Google Scholar