Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T23:15:57.253Z Has data issue: false hasContentIssue false

On the ejection of Earth-mass planets from the habitable zones of the solar twins HD 20782 and HD 188015

Published online by Cambridge University Press:  10 June 2010

K.E. Yeager
Affiliation:
Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX76019, USA
J. Eberle
Affiliation:
Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX76019, USA
M. Cuntz*
Affiliation:
Department of Physics, University of Texas at Arlington, Box 19059, Arlington, TX76019, USA

Abstract

We provide a detailed statistical study of the ejection of fictitious Earth-mass planets from the habitable zones of the solar twins HD 20782 and HD 188015. These systems possess a giant planet that crosses into the stellar habitable zone, thus effectively thwarting the possibility of habitable terrestrial planets. In the case of HD 188015, the orbit of the giant planet is essentially circular, whereas in the case of HD 20782, it is extremely elliptical. As starting positions for the giant planets, we consider both the apogee and perigee positions, whereas the starting positions of the Earth-mass planets are widely varied. For the giant planets, we consider models based on their minimum masses as well as models where the masses are increased by 30%. Our simulations indicate a large range of statistical properties concerning the ejection of the Earth-mass planets from the stellar habitable zones. For example, it is found that the ejection times for the Earth-mass planets from the habitable zones of HD 20782 and HD 188015, originally placed at the centre of the habitable zones, vary by a factor of ~200 and ~1500, respectively, depending on the starting positions of the giant and terrestrial planets. If the mass of the giant planet is increased by 30%, the variation in ejection time for HD 188015 increases to a factor of ~6000. However, the short survival times of any Earth-mass planets in these systems are of no surprise. It is noteworthy, however, that considerable differences in the survival times of the Earth-mass planets are found, which may be relevant for establishing guidelines of stability for systems with less intrusive giant planets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Butler, R.P. et al. (2006). Astrophys. J. 646, 505522.CrossRefGoogle Scholar
Catanzarite, J., Shao, M., Tanner, A., Unwin, S. & Yu, J. (2006). Publ. Astron. Soc. Pacific 118, 13191339.CrossRefGoogle Scholar
Cockell, C.S. et al. (2009). Astrobiology 9, 122.CrossRefGoogle Scholar
Cuntz, M. & Yeager, K.E. (2009). Astrophys. J. Lett. 697, L86L90.CrossRefGoogle Scholar
Cuntz, M., von Bloh, W., Bounama, C. & Franck, S. (2003). Icarus 162, 214221.CrossRefGoogle Scholar
Cuntz, M., Eberle, J. & Musielak, Z.E. (2007). Astrophys. J. Lett. 669, L105L108.CrossRefGoogle Scholar
Eberle, J., Cuntz, M. & Musielak, Z.E. (2008). Astron. Astrophys. 489, 13291335.CrossRefGoogle Scholar
Fatuzzo, M., Adams, F.C., Gauvin, R. & Proszkow, E.M. (2006). Publ. Astron. Soc. Pacific 118, 15101527.CrossRefGoogle Scholar
Forget, F. & Pierrehumbert, R.T. (1997). Science 278, 12731276.CrossRefGoogle Scholar
Gehman, C.S., Adams, F.C. & Laughlin, G. (1996). Publ. Astron. Soc. Pacific 108, 10181023.CrossRefGoogle Scholar
Halevy, I., Pierrehumbert, R.T. & Schrag, D.P. (2009). J. Geophys. Res. 114, D18112.Google Scholar
Jones, B.W., Sleep, P.N. & Chambers, J.E. (2001). Astron. Astrophys. 366, 254262.CrossRefGoogle Scholar
Jones, B.W., Underwood, D.R. & Sleep, P.N. (2005). Astrophys. J. 622, 10911101.CrossRefGoogle Scholar
Jones, B.W., Sleep, P.N. & Underwood, D.R. (2006). Astrophys. J. 649, 10101019.CrossRefGoogle Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108128.CrossRefGoogle Scholar
Lopez, B., Schneider, J. & Danchi, W.C. (2005). Astrophys. J. 627, 974985.CrossRefGoogle Scholar
Menou, K. & Tabachnik, S. (2003). Astrophys. J. 583, 473488.CrossRefGoogle Scholar
Mischna, M.A., Kasting, J.F., Pavlov, A. & Freedman, R. (2000). Icarus 145, 546554.CrossRefGoogle Scholar
Musielak, Z.E., Cuntz, M., Marshall, E.A. & Stuit, T.D. (2005). Astron. Astrophys. 434, 355364; (2008) Erratum 480, 573.CrossRefGoogle Scholar
Noble, M., Musielak, Z.E. & Cuntz, M. (2002). Astrophys. J. 572, 10241030.CrossRefGoogle Scholar
Pilat-Lohinger, E. & Dvorak, R. (2002). Celest. Mech. Dyn. Astron. 82, 143153.CrossRefGoogle Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. (1989). Numerical Recipes. The Art of Scientific Computing. Cambridge University Press, New York.Google Scholar
Ramm, D.J., Pourbaix, D., Hearnshaw, J.B. & Komonjinda, S. (2009). Mon. Not. Roy. Astron. Soc. 394, 16951710.CrossRefGoogle Scholar
Roy, A.E. (2005). Orbital Motion. Institute of Physics Publishing, Bristol and Philadelphia.Google Scholar
Schwarz, R., Dvorak, R., Sűli, Á. & Érdi, B. (2007). Astron. Astrophys. 474, 10231029.CrossRefGoogle Scholar
Smith, R.H. & Szebehely, V. (1993). Celest. Mech. Dyn. Astron. 56, 409425.CrossRefGoogle Scholar
Szenkovits, F. & Makó, Z. (2008). Celest. Mech. Dyn. Astron. 101, 273287.CrossRefGoogle Scholar
Underwood, D.R., Jones, B.W. & Sleep, P.N. (2003). Int. J. Astrobiol. 2, 289299.CrossRefGoogle Scholar
Upton, G. & Cook, I. (2008). A Dictionary of Statistics, 2nd edn.Oxford University Press, New York.CrossRefGoogle Scholar
Valenti, J.A. & Fischer, D.A. (2005). Astrophys. J. Suppl. 159, 141166.CrossRefGoogle Scholar
von Bloh, W., Cuntz, M., Schröder, K.-P., Bounama, C. & Franck, S. (2009). Astrobiology 9, 593602.CrossRefGoogle Scholar