Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T08:50:27.678Z Has data issue: false hasContentIssue false

Impact shocked rocks as protective habitats on an anoxic early Earth

Published online by Cambridge University Press:  14 May 2014

Casey C. Bryce*
Affiliation:
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland, UK
Gerda Horneck
Affiliation:
German Aerospace Center DLR, Institute of Aerospace Medicine, Koeln, Germany
Elke Rabbow
Affiliation:
German Aerospace Center DLR, Institute of Aerospace Medicine, Koeln, Germany
Howell G. M. Edwards
Affiliation:
Centre for Astrobiology and Extremophiles Research, School of Life Sciences, University of Bradford, Bradford, UK Department of Physics and Astronomy, Space Science Research Centre, University of Leicester, Leicester, UK
Charles S. Cockell
Affiliation:
UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, Scotland, UK

Abstract

On Earth, microorganisms living under intense ultraviolet (UV) radiation stress can adopt endolithic lifestyles, growing within cracks and pore spaces in rocks. Intense UV irradiation encountered by microbes leads to death and significant damage to biomolecules, which also severely diminishes the likelihood of detecting signatures of life. Here we show that porous rocks shocked by asteroid or comet impacts provide protection for phototrophs and their biomolecules during 22 months of UV radiation exposure outside the International Space Station. The UV spectrum used approximated the high-UV flux on the surface of planets lacking ozone shields such as the early Earth. These data provide a demonstration that endolithic habitats can provide a refugium from the worst-case UV radiation environments on young planets and an empirical refutation of the idea that early intense UV radiation fluxes would have prevented phototrophs without the ability to form microbial mats or produce UV protective pigments from colonizing the surface of early landmasses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berkner, L.V. & Marshall, L.C. (1965). History of major atmospheric components. Proc. Natl. Acad. Sci. USA 53, 12151225.Google Scholar
Budel, B. & Henssen, A. (1983). Chroococcidiopsis (Cyanophyceae), a phycobiont in the lichen family Lichinaceae . Phycologia 22, 367375.Google Scholar
Budel, B. & Wessels, D. (1991). Rock inhabiting blue-green algae Cyanobacteria from hot arid regions. Algolog. Stud. 64, 85398.Google Scholar
Buick, R. (2008). When did oxygenic photosynthesis evolve? Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 27312743.Google Scholar
Chyba, C.F. & Owen, T.C. (1994). Impact delivery of volatiles and organic molecules to Earth. In Hazards Due To Comets and Asteroids, ed. Gehrels, T., pp. 958. University of Arizona Press, Arizona.Google Scholar
Cockell, C.S. & Horneck, G. (2001). The history of the UV radiation climate of the Earth – theoretical and space-based observations. Photochem. Photobiol. 73(4), 447451.Google Scholar
Cockell, C.S. & Osinski, G.R. (2007). Impact-induced impoverishment and transformation of a sandstone habitat for lithophytic microorganisms. Meteorit. Planet. Sci. 42, 19851993.Google Scholar
Cockell, C.S., Lee, P., Osinski, G., Horneck, G. & Broady, P. (2002). Impact-induced microbial endolithic habitats. Meteor. Planet. Sci. 37, 12871298.Google Scholar
Cockell, C.S., Rettberg, P., Horneck, G., Scherer, K. & Stokes, D.M. (2003). Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Polar Biol. 26, 6269.Google Scholar
Cockell, C.S., Schuerger, A.C., Billi, D., Friedmann, E.I. & Panitz, C. (2005). Effects of a simulated Martian UV flux on the cyanobacterium, Chroococcidiopsis sp 029. Astrobiol. 5, 127140.Google Scholar
Cockell, C.S., Rettberg, P., Rabbow, E. & Olsson-Francis, K. (2011). Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early Earth. ISME J. 5, 16711682.Google Scholar
Dor, L., Carl, N. & Baldinger, I. (1991). Polymorphisms and salinity tolerance as criterion for differentiation of three new species of Chroococcidiopsis (Chrococcidiopsis Chrococcales). Algolog. Stud. 64, 411421.Google Scholar
Fike, D.A., Cockell, C.S., Pearce, D. & Lee, P. (2002). Heterotrophic microbial colonization of the interior of impact-shocked rocks from Haughton impact structure, Devon Island, Nunavut, Canadian High Arctic. Int. J. Astrobiol 1, 311323.Google Scholar
Friedmann, E.I. (1980). Endolithic microbial life in hot and cold deserts. Orig. Life 10, 223235.Google Scholar
Friedmann, E.I. & Ocampo-Friedmann, R. (1995). A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv. Space Res. 15(3), 243246.Google Scholar
Geitler, L. (1933). Diagnosen neuer Blaualgen von den Dunda Inseln. Arch. Hydrobiol. – Suppl 12, 622634.Google Scholar
Horneck, G., Klaus, D.M. & Mancinelli, R.L. (2010). Space microbiology. Microbiol. Mol. Biol. Rev. 74, 121156.Google Scholar
Jorge-Villar, S.E. & Edwards, H.G.M. (2006). Raman spectroscopy in Astrobiology. Anal. Bioanal. Chem. 384, 100113.Google Scholar
Kasting, J.F. & Siefert, J.L. (2002). Life and the evolution of Earth's atmosphere. Science 296, 10661068.Google Scholar
Komarek, J. & Hindak, J. (1975). Taxonomy of the new isolated strains of Chroococcidiopsis (Cyanophyceae). Arch. Hydrobiol. 13, 311329.Google Scholar
Korbie, D.J. & Mattick, J.S. (2008). Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc. 3(9), 14521454.CrossRefGoogle ScholarPubMed
Margulis, L., Walker, J.C.G. & Rambler, M. (1976). Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution. Nature 264, 620624.Google Scholar
Moorbath, S. (2005). Oldest rocks, earliest life, heaviest impacts and the Hadean–Archaean transition. Appl. Geochem. 5, 819824.Google Scholar
Nubel, U., Garcia-Pichel, F. & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from Cyanobacteria. Appl. Environ. Microbiol. 63(8), 33273332.Google Scholar
Osinski, G.R., Lee, P., Spray, J.G., Parnell, J., Lim, D.S.S., Bunch, T.E., Cockell, C.S. & Glass, B. (2005). Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic. Met. Planet. Sci. 40, 17591776.Google Scholar
Pontefract, A., Osinski, G.R., Lindgren, P., Parnell, J., Cockell, C.S. & Southam, G. (2012). The effects of meteorite impacts on the availability of bioessential elements for endolithic organisms. Met. Planet. Sci. 47, 16811691.Google Scholar
Rabbow, E. et al. (2009). EXPOSE, an astrobiological exposure facility on the International Space Station – from proposal to flight. Orig. Life. Evol. Biosph. 39, 581–98.Google Scholar
Rabbow, E., Rettberg, P., Barczyk, S., Bohmeier, M., Parpart, A., Panitz, C., Horneck, G., Burfeindt, J., Molter, M., Jaramillo, E., Pereira, C., Weiß, P., Willnecker, R., Demets, R., Dettmann, J. &, Reitz, G. (2014). The Astrobiological Mission EXPOSE-R on board of the International Space Station.Google Scholar
Rettberg, P., Horneck, G., Strauch, W., Facius, R. & Seckmeyer, G. (1998). Simulation of planetary UV radiation climate on the example of the early Earth. Adv. Space Res. 22, 335339.Google Scholar
Tamaru, Y., Takani, Y., Yoshida, T. & Sakomoto, T. (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune . Appl. Environ. Microbiol. 71, 73277333.Google Scholar
Vítek, P., Edwards, H.G.M., Jehlicka, J., Ascaso, C., De los Ríos, A., Valea, S., Jorge-Villar, S.E., Davila, A.F. & Wierzchos, J. (2010). Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Philos. Trans. R. Soc. A 368(1922), 32053221.Google Scholar
Wang, G., Hao, Z., Huang, Z., Chen, L., Li, X., Hu, C. & Liu, Y. (2010). Raman spectroscopic analysis of a desert cyanobacterium Nostoc sp. in response to UVB radiation. Astrobiology 10(8), 783787.Google Scholar
Westall, F., de Ronde, C. E. J., Southam, G., Grassineau, N., Colas, M., Cockell, C. S. & Lammer, H. (2006). Implications of a 3.472–3.333-Gyr-old subaerial microbial mat from the Barbeton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos. Trans. R. Soc. B 361, 18571875.CrossRefGoogle ScholarPubMed