Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T14:22:48.746Z Has data issue: false hasContentIssue false

Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modelling

Published online by Cambridge University Press:  15 December 2009

A.K. Pavlov*
Affiliation:
Laboratory of Mass Spectrometry, Ioffe Physico-Technical Institute of Russian Academy of Sciences, St. Petersburg, Russia
V.N. Shelegedin
Affiliation:
Department of Biophysics, St. Petersburg Polytechnical State University, St. Petersburg, Russia
M.A. Vdovina
Affiliation:
Laboratory of Mass Spectrometry, Ioffe Physico-Technical Institute of Russian Academy of Sciences, St. Petersburg, Russia
A.A. Pavlov
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD20771, USA

Abstract

Low atmospheric pressures on Mars and the lack of substantial amounts of liquid water were suggested to be among the major limiting factors for the potential Martian biosphere. However, large amounts of ice were detected in the relatively shallow subsurface layers of Mars by the Odyssey Mission and when ice sublimates the water vapour can diffuse through the porous surface layer of the soil. Here we studied the possibility for the active growth of microorganisms in such a vapour diffusion layer. Our results showed the possibility of metabolism and the reproduction of non-extremophile terrestrial microorganisms (Vibrio sp.) under very low (0.01–0.1 mbar) atmospheric pressures in a Martian-like shallow subsurface regolith.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babenko, A.Y., Dmitrieva, E.Y. & Shelegedin, V.N. (1998). Biotechnology N3, 1318 (in Russian)Google Scholar
Biemann, K. (2007). P. Natl. Acad. Sci. USA doi:10.1073/pnas.0703732104.Google Scholar
Biemann, K. et al. (1976). Science 194, 7276.CrossRefGoogle Scholar
Boynton, W.V. et al. (2002). Science 297, 8185.CrossRefGoogle Scholar
Bryson, K., Chevrier, V. & Sears, D.W.G. (2008). Icarus 196(2), 436458.CrossRefGoogle Scholar
Chamberlain, M.A. & Boynton, W.V. (2004). Modeling depth to ground ice on Mars. In Proc. Lunar and Planetary Science XXXV.Google Scholar
Chevrier, V. & Altheide, T.S. (2008). Geophys. Res. Lett. 35, L22101, doi: 10.1029/2008GL035489.CrossRefGoogle Scholar
Chevrier, V., Derek, W.G., Sears, J.D., Chittenden, L.A., Roe, R.U., Bryson, K., Billingsley, L. & Hanley, J. (2007). Geophys. Res. Lett. 34, L02203, doi:10.1029/2006GL028401.CrossRefGoogle Scholar
Chevrier, V., Ostrowski, D.R. & Sears, D.W.G. (2008). Icarus 196(2), 459476.CrossRefGoogle Scholar
Feldman, W.C. et al. (2002). Science 297, 7578.CrossRefGoogle Scholar
Feldman, W.C. et al. (2004). Geophys. Res. Lett. 31, L16702, doi: 10.1029/2004GL020181.Google Scholar
Haberle, R.M., McKay, C.P., Schaeffer, J., Cabrol, N.A., Grin, E.A., Zent, A.P. & Quinn, R. (2001). J. Geophys. Res. 106, 2331723326.CrossRefGoogle Scholar
Hansen, A.A., Jensen, L.L., Kristoffersen, T., Mikkelsen, K., Merrison, J., Finster, K.W. & Lomstein, B.A. (2009). Astrobiology 9(N2), 229240.CrossRefGoogle Scholar
Head, J.W., Mustard, J.F., Kreslavsky, M.A., Milliken, R.E. & Marchant, D.R. (2003). Nature 426, 1825.Google Scholar
Hudson, T.L., Aharonson, O., Schorghofer, N., Farmer, C.B., Hecht, M.H. & Bridges, N.T. (2007). Water J. Geophys. Res. 112, E05016, doi:10.1029/2006JE002815.Google Scholar
Ingersoll, A.P. (1970). Science 168(3934), 972973.CrossRefGoogle Scholar
Jakosky, B.M., Mellon, M.T., Varnes, E.S., Feldman, W.C., Boynton, W.V. & Haberle, R.M. (2005). Icarus 175, 5867.CrossRefGoogle Scholar
Mitrofanov, I. et al. (2002). Science 297, 7881.CrossRefGoogle Scholar
Mellon, M.T., Feldman, W.C. & Prettyman, T.H. (2004). Icarus 169, 324340.CrossRefGoogle Scholar
Möhlmann, D. (2004). Icarus 168, 318323.CrossRefGoogle Scholar
Möhlmann, D. (2005). Astrobiology 5(6), 770777.CrossRefGoogle Scholar
Navarro-González, R. et al. (2006). P. Natl. Acad. Sci. USA 103(44), 1608916094.CrossRefGoogle Scholar
Nicholson, W.L., Munakata, N., Horneck, G., Melosh, J.H. & Setlow, P. (2000) Microbiol. Mol. Biol. Rev. 64(3), 548572.CrossRefGoogle Scholar
Pavlov, A.K., Kalinin, V.L., Konstantinov, A.N., Shelegedin, V.N. & Pavlov, A.A. (2006). Astrobiology 6, 911918.CrossRefGoogle Scholar
Pirt, S.J. (1975). Principles of Microbe and Cell Cultivation. Blackwell Scientific Publications, Oxford.Google Scholar
Schorghofer, N. (2007). Nature 449, 192195.CrossRefGoogle Scholar
Schorghofer, N. & Aharonson, O. (2005). J. Geophys. Res. 110, E05003, doi:10.1029/2004JE002350.CrossRefGoogle Scholar
Schuerger, A.C. & Nicholson, W.L. (2006). Icarus 185, 143152.CrossRefGoogle Scholar
Smith, P.H. et al. (2009). H2O at the Phoenix landing site. Science, 325, 5861.CrossRefGoogle ScholarPubMed
Smoluchowski, R. (1968). Science 159(3821), 13481350.CrossRefGoogle Scholar