Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T13:45:00.645Z Has data issue: false hasContentIssue false

Field method for rapid quantification of labile organic carbon in hyper-arid desert soils validated by two thermal methods

Published online by Cambridge University Press:  05 March 2014

Lauren E. Fletcher
Affiliation:
Atmospheric, Oceanic, and Planetary Physics, University of Oxford, AOPP, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK e-mail: [email protected] Space Sciences Division, NASA Ames Research Center, Moffett Field, California, USA
Julio E. Valdivia-Silva
Affiliation:
Space Sciences Division, NASA Ames Research Center, Moffett Field, California, USA Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D. F. 04510, Mexico
Saul Perez-Montaño
Affiliation:
Space Sciences Division, NASA Ames Research Center, Moffett Field, California, USA Department of Chemistry, San Jose State University, California, USA
Renee M. Condori-Apaza
Affiliation:
Universidad Nacional de San Agustín, Arequipa, Perú
Catharine A. Conley
Affiliation:
Planetary Sciences Division, Science Mission Directorate, NASA Headquarters, Washington DC, USA
Rafael Navarro-Gonzalez
Affiliation:
Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D. F. 04510, Mexico
Christopher P. McKay
Affiliation:
Space Sciences Division, NASA Ames Research Center, Moffett Field, California, USA

Abstract

The objective of this work was to develop a field method for the determination of labile organic carbon in hyper-arid desert soils. Industry standard methods rely on expensive analytical equipment that are not possible to take into the field, while scientific challenges require fast turn-around of large numbers of samples in order to characterize the soils throughout this region. Here we present a method utilizing acid-hydrolysis extraction of the labile fraction of organic carbon followed by potassium permanganate oxidation, which provides a quick and inexpensive approach to investigate samples in the field. Strict reagent standardization and calibration steps within this method allowed the determination of very low levels of organic carbon in hyper-arid soils, in particular, with results similar to those determined by the alternative methods of Calcination and Pyrolysis–Gas Chromatography–Mass Spectrometry. Field testing of this protocol increased the understanding of the role of organic materials in hyper-arid environments and allowed real-time, strategic decision making for planning for more detailed laboratory-based analysis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, M.J., Moody, P.W., Yo, S.A. & Connoly, R.D. (1999). Using active fractions of soil organic matter as indicators of the sustainability of Ferrosol farming systems. Australian Journal of Soil Research 37, 8.Google Scholar
Blair, G.J., Lefroy, R.D.B. & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research 46, 17.CrossRefGoogle Scholar
Brady, N.C. & Weil, R.R. (2001). The Nature and Properties of Soils. Prentice Hall, Upper Saddle River, New Jersey.Google Scholar
Burkins, M.B., Virginia, R.A., Chamberlain, C.P. & Wall, D.H. (2000). Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81, 23772391.CrossRefGoogle Scholar
Burkins, M.B., Virginia, R.A. & Wall, D.H. (2001). Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Global Change Biology 7, 113125.CrossRefGoogle Scholar
Cabria, F.N., Bianchini, M.R. & Mediavilla, M.C. (2005). Óxidos de hierro libres asociados a carbono orgánico en agregados de suelos del partido de Balcarce. Ciencia del Suelos Argentina 23, 2329.Google Scholar
Chan, K.Y., Bowman, A. & Oates, A. (2001). Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys. Soil Science 166, 6167.Google Scholar
Cheshire, M.V., Mundie, C.M. & Shepherd, H. (1969). Transformation of 14C glucose and starch in soil. Soil Biology and Biochemistry 1, 117130.Google Scholar
Conley, C.A., Ishkhanova, G., Mckay, C.P. & Cullings, K. (2006). A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile. Astrobiology 6, 521526.Google Scholar
Connon, S.A., Lester, E.D., Shafaat, H.S., Obenhuber, D.C. & Ponce, A. (2007). Bacterial diversity in hyperarid Atacama Desert soils. Journal of Geophysical Research – Biogeosciences 112, G04S17.CrossRefGoogle Scholar
Cowan, D., Russell, N., Mamais, A. & Sheppard, D. (2002). Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6, 431436.Google Scholar
Davila, A.F., Gomez-Silva, B., De Los Rios, A., Ascaso, C., Olivares, H., Mckay, C.P. & Wierzchos, J. (2008). Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. Journal of Geophysical Research – Biogeosciences 113, G01028.Google Scholar
Drees, K.P., Neilson, J.W., Betancourt, J.L., Quade, J., Henderson, D.A., Pryor, B.M. & Maier, R.M. (2006). Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Applied and Environmental Microbiology 72, 79027908.Google Scholar
Ewing, S.A., Navarro-Gonzalez, R., Amundson, R., Wu, J. & Mckay, C.P. (2004). A soil carbon cycle without life? The content and residence times of organic carbon in the Atacama Desert of Chile. International Journal of Astrobiology 3, 120.Google Scholar
Ewing, S.A., Sutter, B., Owen, J., Nishiizumi, K., Sharp, W., Cliff, S.S., Perry, K., Dietrich, W., Mckay, C.P. & Amundson, R. (2006). A threshold in soil formation at Earth's arid-hyperarid transition. Geochimica et Cosmochimica Acta 70, 52935322.CrossRefGoogle Scholar
Ewing, S.A., Macalady, J.L., Warren-Rhodes, K., Mckay, C.P. & Amundson, R. (2008). Changes in the soil C cycle at the arid–hyperarid transition in the Atacama Desert. Journal of Geophysical Research – Biogeosciences 113, G02S90.Google Scholar
Fletcher, L.E., Conley, C.A., Valdivia-Silva, J.E., Perez-Montaño, S., Condori-Apaza, R., Kovacs, G.T.A., Glavin, D.P. & Mckay, C.P. (2011). Determination of low bacterial concentrations in hyper-arid Atacama soils: comparison of biochemical and microscopy methods with real-time quantitative-PCR. Canadian Journal of Microbiology 57, 953963.CrossRefGoogle Scholar
Fletcher, L.E., Valdivia-Silva, J.E., Perez-Montaño, S., Condori-Apaza, R., Conley, C.A. & Mckay, C.P. (2012). Variability of organic material in surface horizons of the hyper-arid Mars-like soils of the Atacama Desert. Advances in Space Research 49, 271279.Google Scholar
Frigerio, N.A. (1969). Preparation and properties of crystalline permanganic acid. Journal of the American Chemical Society 91, 6200.CrossRefGoogle ScholarPubMed
Gordon, H.T. (1951). Indirect colorimetric micro-oxidimetry of organic compounds. Analytical Chemistry 23, 4.Google Scholar
Haynes, R.J. (2000). Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biology and Biochemistry 32, 211219.Google Scholar
Ladbury, J.W. & Cullis, C.F. (1958). Kinetics and mechanism of oxidation by permanganate. Chemical Reviews 58, 35.Google Scholar
Lai, S. & Lee, D.G. (2002). Lewis acid assisted permanganate oxidations. Tetrahedron 58, 98799887.Google Scholar
Leavitt, S.W., Follett, R.F. & Paul, E.A. (1996). Estimation of slow- and fast-cycling soil organic carbon pools from 6N HCl hydrolysis. Radiocarbon 38, 231239.Google Scholar
Lefroy, R.D.B., Blair, G.J. & Strong, W.M. (1993). Changes in soil organic matter as measured by organic carbon fractions and 13C isotope abundance. Plant and Soil 156, 3.Google Scholar
Lester, E.D., Satomi, M. & Ponce, A. (2007). Microflora of extreme arid Atacama Desert soils. Soil Biology and Biochemistry 39, 704708.Google Scholar
Lucas, S.T. (2004). Evaluation of Labile Soil Carbon Test for Prediction of Soil Productivity Response to Organic Matter Management. University of Maryland, MS.Google Scholar
Maier, R.M., Drees, K.P., Neilson, J.W., Henderson, D.A., Quade, J. & Betancourt, J.L. (2004). Microbial life in the Atacama Desert. Science 306, 12891289.Google Scholar
Mckay, C.P. (2002). Two dry for life: the Atacama Desert and Mars. Ad Astra 14, 4.Google Scholar
Mckay, C.P., Friedmann, E.I., Gomez-Silva, B., Caceres-Villanueva, L., Andersen, D.T. & Landheim, R. (2003). Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Nino of 1997–1998. Astrobiology 3, 393406.Google Scholar
Merck Chemical Company, K. (1974). Análisis de aguas: Una selección de metodologías químicos para la practica. Merck, Darmstadt, Germany.Google Scholar
Middleton, N., Thomas, D. & Programme, U.N.E. (1997). World Atlas of Desertification, 2nd edn, Arnold, Hodder.Google Scholar
Moody, P.W., Yo, S.A. & Aitken, R.L. (1997). Soil organic carbon, permanganate fractions and the chemical properties of acidic soils. Australian Journal of Soil Research 35, 7.Google Scholar
Navarro-Gonzalez, R. et al. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302, 10181021.Google Scholar
Navarro-Gonzalez, R. et al. (2006). The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proceedings of the National Academy of Sciences of the United States of America 103, 1608916094.CrossRefGoogle ScholarPubMed
Navarro-Gonzalez, R., Iniguez, E., De La Rosa, J. & Mckay, C.P. (2009). Characterization of organics, microorganisms, desert soils, and Mars-like soils by thermal volatilization coupled to Mass Spectrometry and their implications for the search for organics on Mars by Phoenix and Future Space Missions. Astrobiology 9, 703715.Google Scholar
Navarro-Gonzalez, R., Vargas, E., De La Rosa, J., Raga, A. & Mckay, C.P. (2010). Reanalysis of the viking results suggests percholorate and organics at mid-latitudes on Mars. Journal of Geophysical Research – Planets 115, E12010.Google Scholar
Nelson, D.W. & Summers, L.E. (1996). Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 3. Chemical Methods, ed. Sparks, D.L., pp. 9611010. American Society of Agronomy-Soil Science Society of America, Madison, WI.Google Scholar
Oades, J.M., Kirkman, M.A. & Wagner, G.H. (1970). Use of gas–liquid chromatography for determination of sugars extracted from soils by sulfuric acid. Soil Science Society of America Proceedings 34, 230235.CrossRefGoogle Scholar
Oyonarte, C., Mingorance, M.D., Durante, P., Pinero, G. & Barahona, E. (2007). Indicators of change in the organic matter in arid soils. Science of the Total Environment 378, 133137.Google Scholar
Paez-Osuna, F., Fong-Lee, M. & Fernandez-Parez, H. (1984). Comparación de tres técnicas para analizar material orgánica en sedimentos nota científica. Anales del Instituto de Ciencias del Mar y Limnoligia 11, 233239.Google Scholar
Paul, E.A., Follett, R.F., Leavitt, S.W., Halvorson, A., Peterson, G.A. & Lyon, D.J. (1997). Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Science Society of America Journal 61, 10581067.Google Scholar
Paul, E.A., Morris, S.J., Conant, R.T. & Plante, A.F. (2006). Does the acid hydrolysis-incubation method measure meaningful soil organic carbon pools? Soil Science Society of America Journal 70, 10231035.Google Scholar
Pauwels, J.M., Wan Ranst, E., Verloo, M. & Mvondoze, A. (1992). Manuel de Laboratorio de Pédologie. AGCD, Belgique.Google Scholar
Rovira, P. & Vallejo, V.R. (2000). Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter. Communications in Soil Science and Plant Analysis 31, 19.Google Scholar
Rovira, P. & Vallejo, V.R. (2002). Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107, 109141.Google Scholar
Rovira, P. & Vallejo, V.R. (2007). Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biology and Biochemistry 39, 202215.Google Scholar
Rudakov, E.S. & Lobachev, V.L. (2000). The first step of oxidation of alkylbenzenes by permanganates in acidic aqueous solutions. Russian Chemical Bulletin 49, 17.Google Scholar
Schulten, H.R. & Leinweber, P. (1993). Pyrolysis-field ionization Mass-Spectrometry of agricultural soils and humic substances – effect of cropping systems and influence of the mineral matrix. Plant and Soil 151, 7790.Google Scholar
Shaabani, A. & Lee, D.G. (2001). Solvent free permanganate oxidations. Tetrahedron Letters 42, 58335836.Google Scholar
Siverman, H.P. & Skoog, D.A. (1963). Amperometic titrations with very dilute solutions of permanganate. Analytical Chemistry 35, 4.Google Scholar
Smith, J.J., Tow, L.A., Stafford, W., Cary, C. & Cowan, D.A. (2006). Bacterial diversity in three different antarctic cold desert mineral soils. Microbial Ecology 51, 413421.Google Scholar
Sorokina, N.E., Khaskov, M.A., Avdeev, V.V. & Nikol'Skaya, I.V. (2005). Reaction of graphite with sulfuric acid in the presence of KMnO4. Russian Journal of General Chemistry 75, 162168.Google Scholar
Stout, J.D., Goh, K.M. & Rafter, T.A. (1981). Chemistry and turnover of naturally occurring resistant organic compounds in soil. In Soil Biochemistry, ed. Paul, E.A. & Ladd, J.N., vol. 5, pp. 173. Marcel Dekker, New York.Google Scholar
Thornthwaite, C.W. (1948). An approach toward a rational classification of climate. Geographical Review 38, 5594.Google Scholar
Tirol-Padre, A. & Ladha, J.K. (2004). Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon. Soil Science Society of America Journal 68, 969978.Google Scholar
Valdivia-Silva, J.E., Fletcher, L.E., Navarro-Gonzalez, R., Mckay, C.P., Perez-Montaño, S., Condori-Apaza, R. & Conley, C.A. (2005) Organic matter analysis of the hyper-arid Peruvian Desert in comparison to other hyper-arid environments. American Geophysical Union, Fall Meeting, 2005 San Francisco.Google Scholar
Valdivia-Silva, J.E., Navarro-Gonzalez, R. & Mckay, C. (2009). Thermally evolved gas analysis (TEGA) of hyperarid soils doped with microorganisms from the Atacama Desert in southern Peru: implications for the Phoenix mission. Advances in Space Research 44, 254266.Google Scholar
Valdivia-Silva, J.E., Navarro-González, R., Ortega-Gutierrez, F., Fletcher, L.E., Perez-Montaño, S., Condori-Apaza, R. & Mckay, C.P. (2011). Multidisciplinary approach of the hyperarid desert of Pampas de La Joya in southern Peru as a new Mars-like soil analog. Geochimica et Cosmochimica Acta 75, 17.CrossRefGoogle Scholar
Valdivia-Silva, J.E., Navarro-Gonzalez, R., Fletcher, L., Perez-Montano, S., Condori-Apaza, R. & Mckay, C.P. (2012). Soil carbon distribution and site characteristics in hyper-arid soils of the Atacama Desert: a site with Mars-like soils. Advances in Space Research 50, 108122.CrossRefGoogle Scholar
Vogel, A.I. (1978). Vogel's Textbook of Quantitative Inorganic Analysis: Including Elementary Instrumental Analysis. Longman Science & Technology, England.Google Scholar
Vogel, A.I. (1989). Vogel's Textbook of Quantitative Chemical Analysis. John Wiley & Sons Inc, New York.Google Scholar
Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils – effect of variations in digestion conditions and of inorganic soil constituents. Soil Science 63, 251264.Google Scholar
Warren-Rhodes, K.A., Rhodes, K.L., Pointing, S.B., Ewing, S.A., Lacap, D.C., Gomez-Silva, B., Amundson, R., Friedmann, E.I. & Mckay, C.P. (2006). Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microbial Ecology 52, 389398.Google Scholar
Weil, R.R., Islam, K.R., Stine, M.A., Gruver, J.B. & Samson-Liebig, S.E. (2003). Estimating active carbon for soil quality assessment: a simplified method for lab and field use. American Journal of Alternative Agriculture 18, 14.Google Scholar
Wierzchos, J., Ascaso, C. & Mckay, C.P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6, 415422.Google Scholar