Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T12:29:50.420Z Has data issue: false hasContentIssue false

Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah

Published online by Cambridge University Press:  17 January 2011

Z. Martins*
Affiliation:
Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
M.A. Sephton
Affiliation:
Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
B.H. Foing
Affiliation:
Science and Robotic Exploration Directorate, European Space Agency (ESA), ESTEC, Postbus 299, 2200 AG Noordwik, The Netherlands
P. Ehrenfreund
Affiliation:
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands Space Policy Institute, George Washington University, Washington, DC, USA

Abstract

Future space missions that aim to detect life should search for molecules that are vital to all living organisms. Although the Viking landers did not find any signs of organic molecules on Mars, signatures of past and/or present life may still exist in the Martian regolith. In this paper, we describe amino acid analyses performed in several Martian analogue soil samples collected close to the Mars Desert Research Station (MDRS), Utah, during the International Lunar Exploration Working Group (ILEWG) EuroGeoMars campaign in February 2009. The Utah desert around Hanksville is characterized as shale desert and is cold and arid with an average annual temperature of 12°C. It is subjected to wind erosion and was shaped by fluvial erosion. The data show large differences in the total amino acid abundances between all the collected soil samples, with values ranging from non-detectable to 100 000 parts per billion (ppb). These results are explained in the context of mineralogical differences (namely different clay content) among the soil samples. The data have implications for future life-detection missions and the target mineralogy that may host biological signatures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubrey, A.D., Cleaves, H.J., Chalmers, J.H., Skelley, A.M., Mathies, R.A., Grunthaner, F.J., Ehrenfreund, P. & Bada, J.L. (2006). Sulfate minerals and organic compounds on Mars. Geology 34, 357360.CrossRefGoogle Scholar
Benner, S., Devine, K., Mateeva, L. & Powell, D. (2000). The missing organic molecules on Mars. Proc. Nat. Acad. Sci. U.S.A. 97, 24252430.CrossRefGoogle ScholarPubMed
Biemann, K. (2007). On the ability of the Viking gas chromatograph-mass spectrometer to detect organic matter. Proc. Nat. Acad. Sci. U.S.A. 104, 1031010313.CrossRefGoogle ScholarPubMed
Biemann, K. & Lavoie, J. (1979). Some final conclusions and supporting experiments related to the search for organic compounds on the surface of Mars. J. Geophys. Res. 84, 83858390.CrossRefGoogle Scholar
Biemann, K., Oro, J., Toulmin, P., III, Orgel, L., Nier, A., Anderson, D., Simmonds, P., Flory, D., Diaz, A., Rushneck, D. et al. (1976). Search for organic and volatile inorganic compounds in two surface samples from the Chryse Planitia region of Mars. Science 194, 7276.CrossRefGoogle ScholarPubMed
Biemann, K., Oro, J., Toulmin, P. III, Orgel, L., Nier, A., Anderson, D., Simmonds, P., Flory, D., Diaz, A., Rushneck, D. et al. (1977). The search for organic substances and inorganic volatile compounds in the surface of Mars. J. Geophys. Res. 82, 46414658.CrossRefGoogle Scholar
Bland, P. & Smith, T. (2000). Meteorite accumulations on Mars. Icarus 144, 2126.CrossRefGoogle Scholar
Borst, A., Peters, S., Foing, B.H., Stoker, C., Wendt, L., Gross, C., Zavaleta, J., Sarrazin, P., Blake, D. & Ehrenfreund, P. (2010). Geochemical Results from EuroGeoMars MDRS Utah 2009 Campaign. LPI 41, 2744.Google Scholar
Buch, A., Glavin, D., Sternberg, R., Szopa, C., Rodier, C., Navarro-González, R., Raulin, F., Cabane, M. & Mahaffy, P. (2006). A new extraction technique for in situ analyses of amino and carboxylic acids on Mars by gas chromatography mass spectrometry. Planet. Space Sci. 54, 15921599.CrossRefGoogle Scholar
Chevrier, V. & Mathé, P. (2007). Mineralogy and evolution of the surface of Mars: a review. Planet. Space Sci. 55, 289314.CrossRefGoogle Scholar
Chronic, H. (1990). Roadside Geology of Utah, Roadside Geology Series, p. 42. ISBN 0-87842-228-5. Mountain Press Publishing Company, Missoula, Montana.Google Scholar
Chyba, C.F. & Sagan, C. (1992). Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 335, 125132.CrossRefGoogle Scholar
Direito, S.O.L., Ehrenfreund, P., Marees, A., Staats, M., Foing, B. & Röling, W.F.M. (2011). A wide variety of extremophiles and large beta-diversity at the Mars Desert Research station (Utah). Int. J. Astrobiol. 10, 191207.CrossRefGoogle Scholar
Fillmore, R. (2000). The Geology of the Parks, Monuments and Wildlands of Southern Utah. The University of Utah Press, Salt Lake City, UT.Google Scholar
Flynn, G. (1996). The delivery of organic matter from asteroids and comets to the early surface of Mars. Earth Moon Planets 72, 469474.CrossRefGoogle Scholar
Foing, B.H., Stoker, C., Zavaleta, J., Ehrenfreund, P., Direito, S., Kotler, M., Martins, Z., Orzechowska, G., Thiel, C. & EuroGeoMars2009 Team. (2011). Field demonstration of astrobiology instruments and methods in MDRS Moon-Mars analogue research. International J. Astrobiol. 10, 141160.CrossRefGoogle Scholar
Glavin, D.P., Schubert, M., Botta, O., Kminek, G. & Bada, J.L. (2001). Detecting pyrolysis products from bacteria on Mars. Earth Planet. Sci. Lett. 185, 15.CrossRefGoogle Scholar
Godfrey, A.E., Everitt, B.L. & Martin Duque, J.F. (2008). Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA. Geomorphology 102, 242251.CrossRefGoogle Scholar
Gómez-Silva, B., Rainey, F.A., Warren-Rhodes, K.A., McKay, C.P. & Navarro-González, R. (2008). Atacama Desert soil microbiology. In Microbiology of extreme soils, ed. Dion, P. & Nautiyal, C.S., volume 13 (Varma, A., ed.), pp. 117132. Springer Berlin Heidelberg.CrossRefGoogle Scholar
Kanavarioti, A. & Mancinelli, R.L. (1990). Could organic matter have been preserved on Mars for 3.5 billion years? Icarus 84, 196202.CrossRefGoogle ScholarPubMed
Klein, H.P. (1978) The Viking biological experiments on Mars. Icarus 34, 666674.CrossRefGoogle Scholar
Kminek, G. & Bada, J.L. (2006). The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet. Sci. Lett. 245, 15.CrossRefGoogle Scholar
Kotler, M. et al. (2011). Analysis of the mineral matrix of planetary soil analogs from the Utah desert. Int. J. Astrobiol. 10, 221229.CrossRefGoogle Scholar
Levin, G.V. & Straat, P.A. (1976). Viking labeled release biology experiment - Interim results. Science 194, 13221329.CrossRefGoogle ScholarPubMed
Marlow, J.J., Martins, Z. & Sephton, M.A. (2011). Organic host analogues and the search for life on Mars. International Journal of Astrobiology 10, 3144.CrossRefGoogle Scholar
Martins, Z., Hofmann, B., Gnos, R., Greenwood, R., Verchovsky, A., Franchi, I., Jull, A., Botta, O., Glavin, D., Dworkin, J. et al. (2007). Amino acid composition, petrology, geochemistry, 14C terrestrial age and oxygen isotopes of the Shisr 033 CR chondrite. Meteorit. Planet. Sci. 42, 15811595.CrossRefGoogle Scholar
Navarro-González, R., Rainey, F., Molina, P., Bagaley, D., Hollen, B., de la Rosa, J., Small, A., Quinn, R., Grunthaner, F., Cáceres, L. et al. (2003). Mars-like soils in the Atacama desert, Chile, and the dry limit of microbial life. Science 302, 10181021.CrossRefGoogle ScholarPubMed
Orzechowska, G.E., Kidd, R.D., Foing, B.H., Kanik, I., Stoker, C. & Ehrenfreund, P. (2011). Analysis of Mars analog soil samples using Solid Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry. Int. J. Astrobiol. 10, 209219.CrossRefGoogle Scholar
Peeters, Z., Quinn, R., Martins, Z., Sephton, M.A., Becker, L., van Loosdrecht, M.C.M., Brucato, J., Grunthaner, F. & Ehrenfreund, P. (2009). Habitability of planetary surfaces: interdisciplinary preparation phase for future Mars missions. Int. J. Astrobiol. 8, 301315.CrossRefGoogle Scholar
Skelley, A.M., Scherer, J.R., Aubrey, A.D., Grover, W.H., Ivester, R.H.C., Ehrenfreund, P., Grunthaner, F.J., Bada, J.L. & Mathies, R.A. (2005). Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. Proc. Nat. Acad. Sci. U.S.A. 102, 10411046.CrossRefGoogle ScholarPubMed
Squyres, S., Grotzinger, J., Arvidson, R., Bell, J., Calvin, W., Christensen, P., Clark, B., Crisp, J., Farrand, W., Herkenhoff, K. et al. (2004). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306, 17091714.CrossRefGoogle ScholarPubMed
Zent, A.P. & McKay, C.P. (1994). The chemical reactivity of the Martian soil and implications for future missions. Icarus 108, 146157.CrossRefGoogle Scholar