Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T13:56:43.341Z Has data issue: false hasContentIssue false

Exoplanets – search methods, discoveries, and prospects for astrobiology

Published online by Cambridge University Press:  04 December 2008

B.W. Jones
Affiliation:
Astronomy Group, Physics & Astronomy, The Open University, Milton Keynes MK7 6AA, UKe-mail: [email protected]

Abstract

Whereas the Solar System has Mars and Europa as the best candidates for finding fossil/extant life as we know it – based on complex carbon compounds and liquid water – the 263 (non-pulsar) planetary systems around other stars as known at 15 September 2008 could between them possess many more planets where life might exist. Moreover, the number of these exoplanetary systems is growing steadily, and with this growth there is an increase in the number of planets that could bear carbon–liquid water life. In this brief review the main methods by which exoplanets are being discovered are outlined, and then the discoveries that have so far been made are presented. This is followed by an account of likely future discoveries. Habitability is then discussed, and an outline presented of how a planet could be studied from afar to determine whether it is habitable, and whether it is indeed inhabited. This review is aimed at the astrobiology community, which spans many disciplines, few of which involve exoplanets. It is therefore at a basic level and concentrates on the major topics.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barman, T.S. (2008). On the presence of water and global circulation in the transiting planet HD 189733b. Astrophys. J. Lett. 676, L61L64.CrossRefGoogle Scholar
Ben-Jaffel, L. (2007). Exoplanet HD209458b: inflated hydrogen atmosphere but no sign of evaporation. Astrophys. J. 671, L61L64.CrossRefGoogle Scholar
Bennett, D.P. et al. (2008). A low-mass planet with a possible sub-stellar–mass host in microlensing event MOA-2007-BLG-192. Astrophys. J. 684, 663683.CrossRefGoogle Scholar
Canfield, D.E. (2005). The early history of atmospheric oxygen: homage to Robert M. Garrels. Ann. Rev. Earth Planet. Sci. 33, 136.CrossRefGoogle Scholar
Charbonneau, D. et al. (2005). Detection of thermal emission from an extrasolar planet. Astrophys. J. 626, 523529.CrossRefGoogle Scholar
CoRoT (2008). CoRot overview. http://smsc.cnes.fr/COROT (accessed September 2008).Google Scholar
Deming, D. et al. (2005). Infrared emission from an extrasolar planet. Nature 434, 740743.CrossRefGoogle Scholar
Deming, D. et al. (2006). Strong infrared emission from the extrasolar planet HD189733b. Astrophys. J. 644, 560564.CrossRefGoogle Scholar
ESA (2006). Darwin overview. http://www.esa.int/esaSC/120382_index_0_m.html (accessed August 2008).Google Scholar
Fogg, M.J & Nelson, R.P. (2007). On the formation of terrestrial planets in hot-Jupiter systems. Astron. Astrophys. 461, 11951208.CrossRefGoogle Scholar
Gaia (2008). Gaia overview. http://www.rssd.esa.int/index.php?project=GAIA&page=index (accessed September 2008).Google Scholar
Gold, T. & Dyson, F.J. (1998). The Deep, Hot Biosphere. Springer, Heidelberg and New York.Google Scholar
Green, S.F. & Jones, M.H. (eds) (2004). An Introduction to the Sun and Stars. Cambridge University Press, Cambridge.Google Scholar
Hipparcos (2007). Hipparcos overview. http://www.rssd.esa.int/index.php?project=HIPPARCOS&page=fposter (accessed September 2008).Google Scholar
Horner, J.A. & Jones, B.W. (2008). Jupiter – friend or foe? I: the asteroids. To appear in the Inter. J. Astrobiol.CrossRefGoogle Scholar
Irwin, P. (2006). Giant Planets of our Solar System: An Introduction. Springer-Praxis, Heidelberg and Chichester.Google Scholar
Jones, B.W. (2004). Life in the Solar System and Beyond. Springer-Praxis, Heidelberg and Chichester.CrossRefGoogle Scholar
Jones, B.W., Sleep, P.N. & Underwood, D.R. (2006). Habitability of known exoplanetary systems based on measured stellar properties. Astrophys. J. 649, 10101019.CrossRefGoogle Scholar
Jones, B.W. (2007). Discovering the Solar System, 2nd edn. John Wiley & Sons, Chichester.Google Scholar
Jones, B.W. (2008). The Search for life continued – planets around other stars. Springer-Praxis, Heidelberg and New York.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Habitable zones around main sequence stars. Icarus 101, 108128.CrossRefGoogle ScholarPubMed
Kepler, (2008). Kepler Space Observatory overview. http://kepler.nasa.gov (accessed September 2008).Google Scholar
Lineweaver, C.H. & Grether, D. (2003). What fraction of Sun-like stars have planets? Astrophys. J. 598, 13501360.CrossRefGoogle Scholar
Mayor, M. & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature 378, 355359.CrossRefGoogle Scholar
MOA (2008). MOA overview. http://www.phys.canterbury.ac.nz/moa/index.html (accessed September 2008).Google Scholar
OGLE (2008). OGLE overview. http://ogle.astrouw.edu.pl (accessed September 2008).Google Scholar
Perryman, M.A.C. (2000). Extra-solar planets. Rep. Prog. Phys. 63, 12091272.CrossRefGoogle Scholar
PLANET+RoboNet (2008). Overview of project. http://www.astro.ljmu.ac.uk/RoboNet (accessed September 2008).Google Scholar
PRIMA (2007). Overview of PRIMA at the VLT. http://www.eso.org/projects/vlti/instru/prima/index_prima.html (accessed September 2008).Google Scholar
Pudritz, R., Higgs, P. & Stone, J. (eds) (2007). Planetary Systems and the Origin of Life. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Raymond, S.N., Scalo, J. & Meadows, V.S. (2007). A decreased probability of habitable planet formation around low-mass stars. Astrophys. J. 669, 606614.CrossRefGoogle Scholar
Richardson, L.J. et al. (2007). A spectrum of an extrasolar planet. Nature 445, 892895.CrossRefGoogle ScholarPubMed
Salby, M.L. (1995). Fundamentals of Atmospheric Physics. Academic Press, San Diego.Google Scholar
Schneider, J. The extrasolar planets encyclopaedia. http://www.exoplanet.eu/ (accessed September 2008).Google Scholar
SIM PlanetQuest (2008). Overview of project. http://planetquest.jpl.nasa.gov/SIMLite/sim_index.cfm (accessed September 2008).Google Scholar
Snellen, I.A.G., Albrecht, S., de Mooij, E.J.W. & Le Poole, R.S. (2008). Ground-based detection of sodium in the transmission spectrum of exoplanet HD 209458b. Astron. Astrophys. 487, 357362.CrossRefGoogle Scholar
Swain, M.R., Vasisht, G. & Tinetti, G. (2008). The presence of methane in the atmosphere of an extrasolar planet. Nature 452, 329331.CrossRefGoogle ScholarPubMed
Udry, S. et al. (2007). The HARPS search for southern extra-solar planets. Astron. Astrophys. 469, L43L47.CrossRefGoogle Scholar
Vogt, S.S., Butler, R.P., Marcy, G.W., Fischer, D.A., Henry, G.W., Laughlin, G., Wright, J.T. & Johnson, J.A. (2005). Five new multicomponent planetary systems. Astrophys. J. 632, 638658.CrossRefGoogle Scholar
William, D.M., Kasting, J.F. & Wade, R.A. (1997). Habitable moons around extrasolar giant planets. Nature 385, 234236.CrossRefGoogle Scholar
Williams, D.R. (2005). NASA fact sheet. http://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html (accessed August 2008).Google Scholar
Williams, D.R. (2007). NASA fact sheet. http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html (accessed August 2008).Google Scholar