Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T13:27:50.129Z Has data issue: false hasContentIssue false

Evidence for the distribution of perchlorates on Mars

Published online by Cambridge University Press:  01 October 2015

Benton C. Clark*
Affiliation:
Space Science Institute, 4750 Walnut, Boulder, CO 80301, USA
Samuel P. Kounaves
Affiliation:
Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA

Abstract

Various Mars missions have detected Cl atoms, chlorides and perchlorates in martian surface materials. The global soils, in particular, always contain significant levels of observable Cl. Direct evidence points to this Cl being in the form of both chlorides and perchlorates, and possibly also chlorates and other oxychlorines. The most widespread measurements have been of Cl atoms, and cannot discern the chemical form. However, from separate evidence of perchlorate obtained at high latitudes (Phoenix lander) and low latitudes (Curiosity rover), it is likely that perchlorates are widespread, albeit in varying proportions relative to the total amount of ubiquitous Cl.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, P.D. et al. (2015). Oxychlorine species on Mars: the Gale crater story. Extended Abstract 2971, Lunar Planet. Sci. Conf. 46, Houston, TX.Google Scholar
Baird, A.K. & Clark, B.C. (1981). On the original igneous source of Martian fines. Icarus 45, 113123.Google Scholar
Blake, D.F. et al. (2013). Curiosity at gale crater, mars: characterization and analysis of the Rocknest sand shadow. Science 341(6153), 1239505. doi: 10.1126/science.1239505.Google Scholar
Boynton, W.V., Taylor, G.J., Karunatillake, S., Reedy, R.C. & Keller, J.M. (2007). Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J. Geophys. Res. 112, E12S99. doi: 10.1029/2007JE002887.Google Scholar
Carrier, B.L. & Kounaves, S.P. (2015). The origins of perchlorate in the martian soil. Geophys. Res. Lett. 42, 37463754. doi: 10.1002/2015GL064290.Google Scholar
Catling, D.C. et al. (2010). Atmospheric origin of perchlorate on Mars and in the Atacama. J. Geophys. Res. 115, E00E11. doi: 10.1029/2009JE003425.Google Scholar
Clancy, R.T. et al. (2013). First detection of Mars atmospheric hydroxyl. Icarus 226, 272281. doi: 10.106lj.icarus.2013.05.035.Google Scholar
Clark, B.C., Baird, A.K., Weldon, R.J., Tsusaki, D.M., Schnabel, L. & Candelaria, M.P. (1982). Chemical composition of martian fines. J. Geophys. Res. 87, 1005910067.Google Scholar
Clark, B.C. & van Hart, D. (1981). The salts of Mars. Icarus 45, 370378.Google Scholar
Clark, B.C. et al. (2005). Chemistry and mineralogy of outcrop at meridiani planum, mars. Earth Planet. Sci. Lett. 240, 7394.Google Scholar
Craddock, R.A. & Greeley, R. (2009). Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus 204, 512526.Google Scholar
Cull, S.C., Arvidson, R.E., Catalano, J.G., Ming, D.W., Morris, R.V., Mellon, M.T. & Lemmon, M. (2010). Concentrated perchlorate at the Mars Phoenix landing site: evidence for thin film liquid water on Mars. Geophys. Res. Lett. 37, L22203, doi: 10.1029/2010GL045269.Google Scholar
Diez, B. et al. (2009). Contribution of mars odyssey GRS at central elysium planitia. Icarus 200(2009), 1929. doi: 10.1016/j.icarus.2008.11.011.Google Scholar
Filiberto, J. & Treiman, A.H. (2009). Martian magmas contained abundant chlorine, but little water. Geology 37(12), 10871090.Google Scholar
Flynn, G.J. (1996). The delivery of organic matter from asteroids and comets to the early surface of Mars. Earth Moon Planets 72, 469474.Google Scholar
Forni, O. et al. (2014). First detection of fluorine on Mars: implications for Gale Crater's geochemistry. Geophys. Res. Lett. 42, 10201028. doi: 10.1002/2014GL062742Google Scholar
Freissinet, C. et al. (2015). Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J. Geophys. Res. 120, 495514. doi: 10.1002/2014JE004737.Google Scholar
Frey, M.M., Savarino, J., Morin, S., Erbland, J. & Martins, J.M.F. (2009). Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmos. Chem. Phys. 9, 86818696.Google Scholar
Gellert, R. & Clark, B.C. (2015). In situ compositional measurements of rocks and soils with the APXS on NASA's Mars rovers. Elements 11, 3944.Google Scholar
Hecht, M.H., et al. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the phoenix lander site. Science 325, 6467.Google Scholar
Hubbard, J., Hardy, J., Voecks, G. & Golub, E. (1973). Photocatalytic synthesis of organic compounds from CO and water: involvement of surfaces in the formation and stabilization of products. J. Mol. Evol. 2, 149166.Google Scholar
Hunten, D.M. (1979). Possible oxidant sources in the atmosphere and surface of Mars. J. Mol. Evol. 14, 7178.Google Scholar
Jackson et al. (2015). Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochim.Cosmochim. Acta 164, 502522. doi: 10.1016/j.gca.2015.05.016.Google Scholar
Jensen, H.B. & Glotch, T.D. (2011). Investigation of the near-infrared spectral character of putative Martian chloride deposits. J. Geophys. Res. 116, E00J03. doi: 10.1029/2011JE003887Google Scholar
Jull, A.J.T. & Donahue, D.J. (1988). Terrestrial age of the antarctic shergottite EETA79001. Geochim. Cosmochim. Acta 52, 13091311.Google Scholar
Kang, N. et al. (2009). Characteristics of ClO4 – formation via photo-dissociation of aqueous chlorite. Environ. Chem. 6, 5359.Google Scholar
Keller, J.M. et al. (2006). Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS. J. Geophys. Res. 111, E03S08. doi: 10.1029/2006JE002679.Google Scholar
Klein, H.P. (1978) The Viking biological experiments on Mars. Icarus 34, 666674.Google Scholar
Kounaves, S.P., et al. (2010). Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: data analysis and results. J. Geophys. Res. 115.Google Scholar
Kounaves, S.P., Carrier, B.L., O'Neil, G.D., Stroble, S.T. & Claire, MW (2013). Destruction of organics on Mars by oxychlorines: evidence from Phoenix, Curiosity, and EETA79001. European Planetary Science Congress, Extended Abs. EPSC2013-799-1, vol. 8.Google Scholar
Kounaves, S.P., Carrier, B.L., O'Neil, G.D., Stroble, S.T. & Claire, M.W. (2014a). Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: implications for oxidants and organics. Icarus 229, 206213.Google Scholar
Kounaves, S.P., Chaniotakis, N.A., Chevrier, V.F., Carrier, B.L., Folds, K.E., Hansen, V.M., McElhoney, K.M., O'Neil, G.D. & Weber, A.W. (2014b). Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus 232, 226231.Google Scholar
Krasnopolsky, V.A. (2006). Photochemistry of the martian atmosphere. Icarus 185, 153170.Google Scholar
Lefevre, F. et al. (2008). Heterogeneous chemistry in the atmosphere of Mars. Nature 454, 971975. doi: 10.1038/nature07116.Google Scholar
Leshin, L.A. et al. (2013). Volatile, isotope, and organic analysis of Martian Fines with the Mars Curiosity Rover. Science 341. doi: 10.1126/science.1238937.Google Scholar
Levin, G.V. & Straat, P.A. (1981) A search for a nonbiological explanation of the viking labeled release life detection experiment. Icarus 45, 494516.Google Scholar
Lodders, K.A. (1998). A survey of Shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteoritics Planet. Sci. 33, A183A190.Google Scholar
Martinez, R. & Gooding, J.L. (1986). New saw-cut surfaces of EETA79001. Antarctic Meteorite Newsletter 9(1), 23, JSC Curator's Office, Houston.Google Scholar
Mason, B. (1971). Handbook of Elemental Abundances in Meteorites. Gordon and Breach Science Publishers, New York.Google Scholar
McLennan, S.M. et al. (2014). Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 343, 1244734.Google Scholar
McSween, H.Y. & Jarosewich, E. (1983). Petrogenesis of the Elephant Moraine A79001 meteorite. Geochim. Cosmochim. Acta 47, 15011513.Google Scholar
Ming, D.W. et al. (2014). Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater, Mars. Science 343, 1245267.Google Scholar
Navarro-González, R. et al. (2006). The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proc. Natl. Acad. Sci. USA 103, 1608916094.Google Scholar
Ojha, L., Wilhelm, M.B., Murchie, S.L., McEwen, A.S., Wray, J.J., Hanley, J., Massé, M. & Chojnacki, M. (2015). Spectral evidence for hydrated salts in seasonal brine flows on Mars. Nature Geosci., in press.Google Scholar
Osterloo, M.M., Hamilton, V.E., Bandfield, J.L., Glotch, T.D., Baldridge, A.M., Christensen, P.R., Tornabene, L.L. & Anderson, F.S. (2008). Chloride-bearing materials in the Southern Highlands of Mars. Science 21, 16511654. doi: 10.1126/science.1150690.Google Scholar
Osterloo, M.M., Anderson, F.S., Hamilton, V.E. & Hynek, B.M. (2010). Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115, E10012. doi: 10.1029/2010JE003613.Google Scholar
Oyama, V.I. & Berdahl, B.J. (1977). The Viking gas exchange experiment results from Chryse and Utopia surface samples. J. Geophys. Res. 82, 46694676.Google Scholar
Oyama, V.I., Berdahl, B.J. & Carle, G.C. (1977). Preliminary findings of the Viking gas exchange experiment and a model for martian surface chemistry. Nature 265, 110114.Google Scholar
Quinn, R.C., Martucci, H.F., Miller, S.R., Bryson, C.E., Grunthaner, F.J. & Grunthaner, P.J. (2013). Perchlorate radiolysis on Mars and the origin of martian soil reactivity. Astrobiology 13, 515520.Google Scholar
Schuttlefield, J. et al. (2012). Photooxidation of chloride by oxide minerals: implications for perchlorate on Mars. J. Am. Chem. Soc. 133, 17521–23.Google Scholar
Smith, M.L., Claire, M.W., Catling, D.C. & Zahnle, K.J. (2014). The formation of sulfate, nitrate and perchlorate salts in the martian atmosphere. Icarus 231, 5164.Google Scholar
ten Kate, I.L. (2010). Organics on Mars? Astrobiology 10(6), 589603. doi: 10.1089/ast.2010.0498.Google Scholar
Vaniman, D.T. et al. (2014). Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343. doi: 10.1126/science.1243480.Google Scholar
Wiens, R.C. et al. (2012). The ChemCam instrument suite on the Mars science laboratory (MSL) rover: body unit and combined system tests. Space Sci Rev. doi: 10.1007/s11214-012-9902-4Google Scholar
Yen, A.S. et al. (2006). Evidence for halite at Meridiani Planum, Extended Abstract 2128. Lunar Planet. Sci. 37th, Houston, TX.Google Scholar
Yen, A.S., Ming, D.W., Gellert, R., Vaniman, D., Clark, B., Morris, R., Mittlefehldt, D.W. & Arvidson, R.E. (2014). Investigation of martian aqueous processes using multiple APXS datasets. Extended Abstract 1403, 8th International Conf. Mars, Pasadena, CA, July 2014.Google Scholar
Yung, Y.L. & DeMore, W.B. (1999). Photochemistry of Planetary Atmospheres. Oxford University Press, NY.Google Scholar