Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T20:35:57.432Z Has data issue: false hasContentIssue false

Electrostatic activation of prebiotic chemistry in substellar atmospheres

Published online by Cambridge University Press:  14 January 2014

C. R. Stark*
Affiliation:
SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK
Ch. Helling
Affiliation:
SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK
D. A. Diver
Affiliation:
SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
P. B. Rimmer
Affiliation:
SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK

Abstract

Charged dust grains in the atmospheres of exoplanets may play a key role in the formation of prebiotic molecules, necessary to the origin of life. Dust grains submerged in an atmospheric plasma become negatively charged and attract a flux of ions that are accelerated from the plasma. The energy of the ions upon reaching the grain surface may be sufficient to overcome the activation energy of particular chemical reactions that would be unattainable via ion and neutral bombardment from classical, thermal excitation. As a result, prebiotic molecules or their precursors could be synthesized on the surface of dust grains that form clouds in exoplanetary atmospheres. This paper investigates the energization of the plasma ions, and the dependence on the plasma electron temperature, in the atmospheres of substellar objects such as gas giant planets. Calculations show that modest electron temperatures of ≈1 eV (≈104 K) are enough to accelerate ions to sufficient energies that exceed the activation energies required for the formation of formaldehyde, ammonia, hydrogen cyanide and the amino acid glycine.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, F., Hauschildt, P.H., Alexander, D.R., Tamanai, A. & Schweitzer, A. (2001). Astrophys. J. 556, 357.CrossRefGoogle Scholar
Bailey, J., Chrysostomou, A., Hough, J.H., Gledhill, T.M., McCall, A., Clark, S., Ménard, F. & Tamura, M. (1998). Science 281, 672.Google Scholar
Bennett, C.J. & Kaiser, R.I. (2007). Astrophys. J. 660, 1289.Google Scholar
Bernstein, M.P. et al. (2002). Nature 416, 401.CrossRefGoogle Scholar
Bilger, C., Rimmer, P.B. & Helling, Ch. (2013). Mon. Not. R. Astron. Soc., 435(3), 18881903.CrossRefGoogle Scholar
Blagojevic, V. et al. (2003). Mon. Not. R. Astron. Soc. 339, L7.Google Scholar
Bouchoule, A. (1999). Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing, 1st edn, p. 6. John Wiley & Sons Ltd, Chichester, England.Google Scholar
Burrows, A., Marley, M., Hubbard, W.B., Lunine, J.I., Guilot, T., Saumon, D., Freedman, R., Sudarsky, D. & Sharp, C. (1997). Astrophys. J. 491, 865.Google Scholar
Chang, Z.S., Zhao, N. & Yuan, P. (2010). Phys. Plasmas 17, 113514.Google Scholar
Charnley, S.B., Ehrenfreund, P. & Kuan, Y.-J. (2001). Spectrochim. Acta A 57, 685.Google Scholar
Chen, F.F. (1984). Introduction to Plasma Physics and Controlled Fusion. Volume 1: Plasma Physics, 2nd edn. Plenum Press, New York.Google Scholar
Christensen, U.R., Holzwarth, V. & Reiners, A. (2009). Nature 457, 168.Google Scholar
Cooper, C.S. & Showman, A.P. (2005). Astrophys. J. 629, L45.Google Scholar
Daugherty, J.E. & Graves, D.B. (1993). J. Vac. Sci. Technol. A 11, 1126.Google Scholar
Davis, L. & Greenstein, J.L. (1949). Phys. Rev. Lett. 457, 865.Google Scholar
Dehn, M. (2007). PhD Thesis, University of Hamburg.Google Scholar
Diver, D.A. (2013). A Plasma Formulary for Physics, Technology, and Astrophysics, 2nd edn. Wiley–VCH, Berlin, New York.Google Scholar
Dobbs-Dixon, I. & Lin, D.N.C. (2008). Astrophys. J. 673, 513.CrossRefGoogle Scholar
Dobbs-Dixon, I., Cumming, A. & Lin, D.N.C. (2010). Astrophys. J. 710, 1395.Google Scholar
Dobbs-Dixon, I., Agol, E. & Burrows, A. (2012). Astrophys. J. 751, 87.Google Scholar
Donati, J.-F. & Landstreet, J.D. (2009). Annu. Rev. Astron. Astrophys. 47, 333.Google Scholar
Elsila, J.E. et al. (2007). Astrophys. J. 660, 911.Google Scholar
Fridman, A. (2008). Plasma Chemistry, 1st edn. Cambridge University Press, New York.Google Scholar
Guo, Y., Yuan, P., Shen, X. & Wang, J. (2009). Phys. Scr. 80, 035901.Google Scholar
Hauschildt, P.H. & Baron, E. (1999). J. Comp. Appl. Math. 109, 41.Google Scholar
Helling, Ch. & Woitke, P. (2006). Astron. Astrophys. 455, 325.Google Scholar
Helling, Ch., Klein, R., Woitke, P., Nowak, U. & Sedlmayr, E. (2004). Astron. Astrophys. 423, 657.Google Scholar
Helling, Ch., Dehn, M., Woitke, P. & Hauschildt, P.H. (2008a). Astrophys. J. 675, L105.Google Scholar
Helling, Ch. et al. (2008b). Mon. Not. R. Astron. Soc. 391, 1854.Google Scholar
Helling, Ch., Woitke, P. & Thi, W.-F. (2008c). Astron. Astrophys. 485, 547.Google Scholar
Helling, Ch., Woitke, P. & Thi, W.-F. (2008d). Astron. Astrophys. 485, 547.CrossRefGoogle Scholar
Helling, Ch., Jardine, M., Witte, S. & Diver, D.A. (2011a). Astrophys. J. 727, 4.Google Scholar
Helling, Ch., Jardine, M. & Mokler, F. (2011b). Astrophys. J. 737, 38.Google Scholar
Helling, Ch., Jardine, M., Stark, C.R. & Diver, D.A. (2013). Astrophys. J. 767, 136.CrossRefGoogle Scholar
Heng, K., Menou, K. & Phillips, P.J. (2011). Mon. Not. R. Astron. Soc. 413, 2380.CrossRefGoogle Scholar
Hill, H.G.M. & Nuth, J.A. (2003). Astrobiology 3, 2, 291.Google Scholar
Johnson, A.P., Cleaves, H.J., Dworkin, J.P., Glavin, D.P., Lazcano, A. & Bada, J.L. (2008). Science 322, 5900.Google Scholar
Kammler, Th., Kolovos-Vellianitis, D. & Küppers, J. (2000). Surface Sci. 460, 91.Google Scholar
Kasting, J.F. (1993). Science 259, 5097.Google Scholar
Kasting, J.F. & Catling, D. (2003). Annu. Rev. Astron. Astrophys. 41, 429.Google Scholar
Kilgore, M.D., Daugherty, J.E., Porteous, R.K. & Graves, D.B. (1994). J. Vac. Sci. Technol. B 12, 486.CrossRefGoogle Scholar
Largo, L., Redondo, P., Rayón, V.M., Largo, A. & Barrientos, C. (2010). Astron. Astrophys. 516, A79.Google Scholar
Lewis, N.K., Showman, A.P., Fortney, J.J., Marley, M.S. & Freedman, R.S. (2010). Astrophys. J. 720, 344.Google Scholar
Marley, M., Seagar, S., Saumon, D., Lodders, K., Ackerman, A.S., Freedman, R.S. & Fan, X. (2002). Astrophys. J. 568, 335.CrossRefGoogle Scholar
Matsoukas, T. & Cao, J. (2004). IEEE Trans. Plasma Sci. 32, 2.Google Scholar
Menou, K. & Rauscher, E. (2009). Astrophys. J. 700, 887.Google Scholar
Miller, S.L. (1953). Science 117, 3046, 528.CrossRefGoogle Scholar
Miller, S.L. & Urey, H.C. (1959). Science 3379, 245.CrossRefGoogle Scholar
Morley, C.V., Fortney, J.J., Marley, M.S., Visscher, C., Saumon, D. & Legget, S.K. (2012). Astrophys. J. 756, 172.Google Scholar
Muñoz Caro, G.M. et al. (2002). Nature 416, 28.Google Scholar
Nuevo, M. et al. (2006). Astron. Astrophys. 457, 741.Google Scholar
Nuevo, M. et al. (2007). Adv. Space Res. 39, 400.Google Scholar
Nuth, J.A. III, Paquette, J.A. & Farquhar, A. (2012). Meteoritics Planet. Sci. 47(12), 2056.Google Scholar
Peltzer, E.T. & Bada, J.L. (1978). Nature 272, 443.Google Scholar
Qin, C. & Coulombe, S. (2007). Plasma Sources Sci. Technol. 16, 240.CrossRefGoogle Scholar
Rauscher, E. & Menou, K. (2010). Astrophys. J. 714, 1334.Google Scholar
Reiners, A. (2012). Living Rev. Sol. Phys. 8, 1.Google Scholar
Rimmer, P.B. & Helling, Ch. (2013). Astrophys. J. 774, 108.Google Scholar
Sánchez-Lavega, A. (2004). Astrophys. J. 609, L87.Google Scholar
Shi, D., Wang, S.X., Wim, , van Ooij, J. & Wang, L.M. (2001). Appl. Phys. Lett. 78, 9.Google Scholar
Showman, A.P. & Guilot, T. (2002). Astron. Astrophys. 385, 166.Google Scholar
Showman, A.P., Cooper, C.S., Fortney, J.J. & Marley, M.S. (2008). Astrophys. J. 682, 559.Google Scholar
Showman, A.P., Fortney, J.J., Lian, Y., Marley, M.S., Freedman, R.S., Knutson, H.A. & Charbonneau, D. (2009). Astrophys. J. 699, 564.Google Scholar
Shulyak, D., Seifahrt, A., Reiners, A., Kochukhov, O. & Piskunov, N. (2011). Mon. Not. R. Astron. Soc. 418, 2548.Google Scholar
Sorrell, W.H. (2001). Astrophys. J. 555, L129.Google Scholar
Stark, C.R., Potts, H.E. & Diver, D.A. (2006). Astron. Astrophys. 457, 365.Google Scholar
Stark, C.R., Diver, D.A., Helling, Ch. & Rimmer, P.B. (2013). Under review Astrophys. J. 776, 11.Google Scholar
Tsuji, T. (2002). Astrophys. J. 575, 264.Google Scholar
Uman, M.A. & Orville, R.E. (1964). J. Geophys. Res. 69, 24, 5151.CrossRefGoogle Scholar
Witte, S., Helling, Ch. & Hauschildt, P.H. (2009). Astron. Astrophys. 506, 1367.Google Scholar
Witte, S., Helling, Ch., Barman, T., Heidrich, N. & Hauschildt, P.H. (2011). Astron. Astrophys. 529, A44.Google Scholar
Woitke, P. & Helling, Ch. (2003). Astron. Astrophys. 399, 297.Google Scholar
Woon, D.E. (2002). Astrophys. J. 571, L177.Google Scholar
Wu, H. & Xie, B. (2005). Phys. Plasmas 12, 064503.Google Scholar
Yarin, A.L., Rovagnati, B. & Mashayek, F. (2006). J. Appl. Phys. 99, 064310.Google Scholar