Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T06:10:16.576Z Has data issue: false hasContentIssue false

Climatological characteristics in the extreme hyper-arid region of Pampas de La Joya, Peru. Astrobiological approach in four years of observation: 2004–2008

Published online by Cambridge University Press:  17 October 2011

Julio E. Valdivia-Silva*
Affiliation:
Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Distrito Federal 04510, México Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
Rafael Navarro-González
Affiliation:
Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Distrito Federal 04510, México
Lauren Fletcher
Affiliation:
Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA Atmospheric, Oceanic, and Planetary Physics, University of Oxford, Oxford, UK
Saúl Pérez-Montaño
Affiliation:
Department of Chemistry, San Jose State University, San Jose, CA 95192, USA
Reneé Condori-Apaza
Affiliation:
Facultad de Ingeniería Química, Universidad Nacional San Agustín, Arequipa, Perú
Fernando Ortega-Gutiérrez
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Distrito Federal 04510, México
Christopher McKay
Affiliation:
Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract

This study reports the environmental conditions of temperature, moisture and radiation for four years (May 2004 to July 2008) in the area known as Pampas de La Joya in southern Peru, which recently has been considered as a new Mars analogue. The period of evaluation includes the El Niño Southern Oscillation (ENSO) during the months of September 2006 to March 2007, which, despite not having catastrophic effects like its predecessor on 1997–1998, showed an interesting increase in humidity. Our data describe the extreme conditions present in the region and their relationship with the presence of potential habitats that could allow for the survival of micro-organisms. The average environmental temperature was 18.9°C, with a maximum of 35.9°C and a minimum of −4.5°C. The annual average incident solar radiation was 508 W m−2, with high near 1060 W m−2 at noon during the driest period between September and March. The average relative humidity (RH) was 29.5, 20.1 and 20.4% for air, soil and rock, respectively. The RH had higher values at night due to fog during the months of June and August, and during the early morning between December and March. During the months of ENSO event there were four episodes of precipitation (1.1, 1.5, 2.0 and 0.9 mm), of which three increased soil and rock moisture on an average more than 45% and persisted for over 15 days after precipitation, while the atmospheric environment had no significant variations. Finally, quartz rocks and evaporite minerals colonized with micro-organisms were found as the only micro-habitats, in this region, capable of supporting life in this extreme environment.

Type
Research Article
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States
Copyright
Copyright © Cambridge University Press 2011 This is a work of the U.S. Government and is not subject to copyright protection in the United States.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azúa-Bustos, A. et al. (2011). Microb. Ecol. 61, 568581.CrossRefGoogle Scholar
Banfield, J.L. (2002). J. Geophys. Res. 107, 5042.Google Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J. & Rylander, K.A. (2000). Science 289, 15421546.CrossRefGoogle Scholar
Cereceda, P. et al. (2002). Advective, orographic and radiation fog in the Tarapacá region, Chile. Atmos. Res. 64, 261271.CrossRefGoogle Scholar
Conley, C.A., Ishkhanova, G., McKay, C.P. & Cullings, K. (2006). Astrobiology 6, 521526.CrossRefGoogle Scholar
Cruz-Kuri, L., McKay, C. & Navarro-Gonzalez, R. (2009). Orig. Life Evol. Biosph. 39, 380.Google Scholar
Davila, A.F. et al. (2008). J. Geophys. Res.-Biogeosci. 113, G01028.CrossRefGoogle Scholar
Davis, W.L., de Pater, I. & McKay, C.P. (2010). Planet. Space Sci. 58, 616622.CrossRefGoogle Scholar
Drees, K.P. et al. (2006). Appl. Environ. Microbiol. 72, 79027908.CrossRefGoogle Scholar
Dunai, T.J., González-López, G.A. & Juez-Larré, J. (2005). Geology 33, 321324.CrossRefGoogle Scholar
Escobar, D.F. (1993). Evaluacion climatologica y sinoptica del fenomeno de vientos Paracas (in Spanish), Thesis, Universidad Nacional Agraria, La Molina (available in the University web site), Lima, p. 210.Google Scholar
Evenstar, L., Hartley, A.J., Rice, C., Stuart, F., Mather, A. & Chong Díaz, G. (2005). 6th Int. Symp. on Andean Geodynamics (ISAG), Barcelona, Spain.Google Scholar
Ewing, S.A. et al. (2006). Geochim. Cosmochim. Acta 70, 52935322.CrossRefGoogle Scholar
Fabré, A., Gauquelin, T., Vilasante, F., Ortega, A. & Puig, H. (2006). Phosphorus content in five representative landscape units of the Lomas de Arequipa (Atacama Desert-Peru). Catena 65, 8086.CrossRefGoogle Scholar
Friedmann, E.I., Lipkin, Y. & Ocampo-Paus, R. (1967). Phycologia 6, 185200.Google Scholar
Friedmann, E.I. & Ocampo-Friedmann, R. (1977). Endolithic microorganisms in extreme dry environments: analysis of a lithobiotic habitat. In Current Perspectives in Microbial Ecology, ed. Klug, M.J. & Reddy, C.A., pp. 177185. American Society for Microbiology, Washington, DC.Google Scholar
Hartley, A.J., Chong, G., Houston, J. & Mather, A.E. (2005). J. Geol. Soc. 162, 421424.CrossRefGoogle Scholar
Houston, J. & Hartley, A.J. (2003). Int. J. Climatol. 23, 14531464.CrossRefGoogle Scholar
Lester, E.D., Satomi, M. & Ponce, A. (2007). Soil Biol. Biochem. 39, 704708.CrossRefGoogle Scholar
Liley, J.B. & McKenzie, R.L. (2006). Where on Earth has the highest UV? In UV Radiation and its Effects: An Update, pp. 2637. Available online at http://www.niwascience.co.nz/rc/atmos/uvconference.Google Scholar
McKay, C.P. (2004). PLoS Biol. 2, 12601263.CrossRefGoogle Scholar
McKay, C.P. & Davis, W.L. (1991). Icarus 90, 214221.CrossRefGoogle Scholar
McKay, C.P., Friedmann, E.I., Gomez-Silva, B., Caceres-Villanueva, L., Andersen, D.T. & Landheim, R. (2003). Astrobiology 3, 393406.Google Scholar
McKay, C.P., Molaro, J.L. & Marinova, M.M. (2009). Geomorphology 110, 182187.CrossRefGoogle Scholar
Michalski, G., Bohlke, J.K. & Thiemens, M. (2004). Geochem. Cosmochem. Acta 68, 40234038.CrossRefGoogle Scholar
Moody, G.L. (1979). Aircraft derived low level winds and upwelling off the Peruvian coast during March, April, May, 1977CUEA Technical Report. Department of Meteorology, Florida State University, Tallahassee (Available from the National Technical Information Service, Accession No. PB80-119571).Google Scholar
Navarro-González, R. et al. (2003). Science 302, 10181121.CrossRefGoogle Scholar
Pérez-Chavez, I., Navarro-Gonzalez, R., McKay, C.P. & Cruz-Kuri, L. (2000). Astrobiology: Origins from the Big-Bang to Civilization, pp. 297302. Kluwer Academic Publishers, Dordrecht, FL.CrossRefGoogle Scholar
Quinn, R.C., Ehrenfreund, P., Grunthaner, F.J., Taylor, C.L. & Zent, A.P. (2007). J. Geophys. Res.–Biogeosci. 112, G04S18.Google Scholar
Rundel, P.W. (1978). Ecological relationships of desert fog zone lichens. Bryologist 81, 277293.CrossRefGoogle Scholar
Rundel, P.W., Villagra, P.E., Dillon, M.O., Roig-Juñent, S. & Debandi, G. (2007). Chapter 10. Arid and semi-arid ecosystems. In The Physical Geography of South America ed. Veblen, T.T., Young, K.R. & Orme, A.R., pp. 158183. Oxford University Press, Oxford, UK.Google Scholar
Rutllant, J., Fuenzalida, H.R.T. & Figueroa, D. (1998). Rev. Chilena Historia Nat. 71, 405427.Google Scholar
SENAMHI. 2010. Informacion del Tiempo, Clima y Agua. Servicio Nacional de Meteorologia e Hidrologia del Peru, Lima, Peru. http://www.senamhi.gob.peGoogle Scholar
Takayabu, Y.N., Iguchi, T., Kachi, M., Shibata, A. & Kanzawa, H. (1999). Nature 402, 279282.CrossRefGoogle Scholar
Trewartha, G.T. (1961). The Earth's Problem Climates. University of Wisconsin Press, Madison, WI.Google Scholar
Ulloa, O., Escribano, R., Hormazabal, S., Quiñones, R.A., González, R.R. & Ramos, M. (2001). Geophys. Res. Lett. 28, 15911594.Google Scholar
Valdivia-Silva, J.E., Navarro-Gonzalez, R. & McKay, C. (2009). Adv. Space Res. 44, 254266.CrossRefGoogle Scholar
Valdivia-Silva, J.E. et al. (2011). Multidisciplinary approach of the hyperarid desert of Pampas de La Joya in southern Peru as a new Mars-like soil analogue. Geochimica et Cosmochimica Acta 75(7), 19751991.CrossRefGoogle Scholar
Warren-Rhodes, K.A. et al. (2006). Microb. Ecol. 52, 389398.CrossRefGoogle Scholar
Warren-Rhodes, K.A. et al. (2007). J. Geophys. Res.–Biogeosci. 112, G04S05.Google Scholar
Wierzchos, J., Ascaso, C. & McKay, C.P. (2006). Astrobiology 6, 415422.CrossRefGoogle Scholar
Supplementary material: File

Valdivia-Silva Supplementary Tables

Valdivia-Silva Supplementary Tables

Download Valdivia-Silva Supplementary Tables(File)
File 114.7 KB