Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T11:50:48.935Z Has data issue: false hasContentIssue false

The case for life on Mars

Published online by Cambridge University Press:  08 July 2008

Dirk Schulze-Makuch
Affiliation:
School of Earth and Environmental Sciences, Washington State University, Pullman, WA 99163, USA e-mail: [email protected]
Alberto G. Fairén
Affiliation:
Space Science and Astrobiology Division, NASA Ames Research Center, USA
Alfonso F. Davila
Affiliation:
Space Science and Astrobiology Division, NASA Ames Research Center, USA

Abstract

There have been several attempts to answer the question of whether there is, or has ever been, life on Mars. The boldest attempt was the only ever life detection experiment conducted on another planet: the Viking mission. The mission was a great success, but it failed to provide a clear answer to the question of life on Mars. More than 30 years after the Viking mission our understanding of the history and evolution of Mars has increased vastly to reveal a wetter Martian past and the occurrence of diverse environments that could have supported microbial life similar to that on Earth for extended periods of time. The discovery of Terran extremophilic microorganisms, adapted to environments previously though to be prohibitive for life, has greatly expanded the limits of habitability in our Solar System, and has opened new avenues for the search of life on Mars. Remnants of a possible early biosphere may be found in the Martian meteorite ALH84001. This claim is based on a collection of facts and observations consistent with biogenic origins, but individual links in the collective chain of evidence remain controversial. Recent evidence for contemporary liquid water on Mars and the detection of methane in the Martian atmosphere further enhance the case for life on Mars. We argue that, given the cumulative evidence provided, life has and is likely to exist on Mars, and we have already found evidence of it. However, to obtain a compelling certainty a new mission is needed, one which is devoted to the detection of life on Mars.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, O. & Kring, D.A. (2005). Impact-induced hydrothermal activity on early Mars. J. Geophys. Res. 110, E12S09, doi:10.1029/2005JE002453.Google Scholar
Acuña, M.J. et al. (1999). Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment. Science 284, 790793.CrossRefGoogle ScholarPubMed
Amils, R. et al. (2007). Extreme environments as Mars terrestrial analogues: the Rio Tinto case. Plan. Spac. Sci. 55, 370381.CrossRefGoogle Scholar
Anders, E. (1996). Evaluating the evidence for past life on Mars. Science 274, 21192121.CrossRefGoogle ScholarPubMed
Anderson, R., Dohm, J., Golembek, M., Haldemann, A., Franklin, B., Tanaka, K., Lias, J. & Peer, B. (2000). Primary Centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res. 106, 20 56320 586.CrossRefGoogle Scholar
Andrews-Hanna, J.C., Phillips, R.J. & Zuber, M.T. (2007). Meridiani Planum and the global hydrology of Mars. Science 446, 71327135.Google ScholarPubMed
Ansan, V. & Mangold, N. (2006). New observations of Warrego Valles, Mars: evidence for precipitation and surface runoff. Planet Space Sci. 54, 219242.CrossRefGoogle Scholar
Arrhenius, S. (1903). Die Verbreitung des Lebens im Weltenraum. Umschau 7, 481485.Google Scholar
Arvidson, R.E., Poulet, F., Bibring, J.P., Wolff, M., Gendrin, A., Morris, R.V., Freeman, J.J., Langevin, Y., Mangold, N. & Bellucci, G. (2005). Spectral reflectance and morphologic correlations in eastern Terra Meridiani, Mars. Science 307, 15911594.CrossRefGoogle ScholarPubMed
Baker, B.J., Tyson, G.W., Webb, R.I., Flanagan, J., Hugenholtz, P., Allen, E.E. & Banfield, J.F. (2006). Lineages of acidophilic Archaea revealed by community genomic analysis. Science 314, 19331935.CrossRefGoogle ScholarPubMed
Baker, V.R., Strom, R.G., Gulick, V.C., Kargel, J.S., Komatsu, G. & Kale, V.S. (1991). Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352, 589594.CrossRefGoogle Scholar
Baker, V.R. (2001). Water and the martian landscape. Nature 412, 228236.CrossRefGoogle ScholarPubMed
Bakermans, C., Tsapin, A.I., Souza-Egipsy, V., Gilichinsky, D.A. & Nealson, K.H. (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ. Microbiol. 5, 321326.CrossRefGoogle Scholar
Ballou, E.V., Wood, P.C., Wydeven, T., Lehwalt, M.E. & Mack, R.E. (1978). Chemical interpretation of Viking lander 1 life detection experiment. Nature 271, 644645.CrossRefGoogle Scholar
Banin, A. & Rishpon, J. (1979). Smectite clays in Mars soil: evidence for their presence and role in Viking biology experimental results. J. Mol. Evol. 14, 133152.CrossRefGoogle ScholarPubMed
Barber, D.J. & Scott, E.R.D. (2002). Origin of supposedly biogenic magnetite in the martian meteorite Alan Hills 84001. Proc. Natl. Acad. Sci. U.S.A. 99, 65566561.CrossRefGoogle Scholar
Barriga, F.A.S., de Carvalho, D. & Ribeiro, A. (1997). Introduction to the Iberian Pyritic Belt. In: Geology and VMS of the Iberian Pyrite Belt, eds Barriga, F.A.S. & de Carvalho, D., pp. 120. Society of Economic Geologists.CrossRefGoogle Scholar
Bazylinski, D.A. & Frankel, B.R. (2003). Biologically controlled mineralization in prokaryotes. Rev Mineral Geochem. 54, 217247.CrossRefGoogle Scholar
Becker, L., Popp, B., Rust, T. & Bada, J.L. (1999). The origin of organic matter in the Martian meteorite ALH84001. EPSL 167, 7179.CrossRefGoogle ScholarPubMed
Bell, M.S. (2007). Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001. Meteorit. Planet. Sci. 42, 935949.CrossRefGoogle Scholar
Benner, S.A., Devine, K.G., Matveeva, L.N. & Powell, D.H. (2000). The missing organic molecules on Mars. Proc. Natl. Acad. Sci. U.S.A. 97, 24252430.CrossRefGoogle ScholarPubMed
Bibring, J.P. et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307, 5715–1576.CrossRefGoogle ScholarPubMed
Bibring, J.P. et al. (2007). Coupled ferric oxides and sulfates on the Martian surface. Science 317, 12061210.CrossRefGoogle ScholarPubMed
Biemann, K. (1979). The implications and limitations of the findings of the Viking Organic Analysis Experiment. J. Mol. Evol. 14, 6570.CrossRefGoogle ScholarPubMed
Biemann, K. (2007). On the ability of the Viking gas chromatograph–mass spectrometer to detect organic matter. Proc. Natl. Acad. Sci. 104(25), 131010313.CrossRefGoogle ScholarPubMed
Biemann, K., Oro, J., Toulmin, P., Orgel, L.E., Nier, A.O., Anderson, D.M., Flory, D., Diaz, A.V., Rushneck, D.R. & Simmonds, P.G. (1977). The search for organic substances and inorganic volatitle compounds in the surface of Mars. J. Geophys. Res. 82, 46414658.CrossRefGoogle Scholar
Blakemore, R.P. (1982). Magnetotactic bacteria. Annu. Rev. Microbiol. 36, 217238.CrossRefGoogle ScholarPubMed
Boston, P.J., Ivanov, M.V. & McKay, C.P. (1992). On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95, 300308.CrossRefGoogle ScholarPubMed
Bradley, J.P., Harvey, R.P. & McSween, H.Y. Jr., (1997). No ‘nanofossils’ in Martian meteorite. Nature 390, p. 454.CrossRefGoogle ScholarPubMed
Bräuer, S.L., Cadillo-Quiroz, H., Yashiro, E., Yavitt, J.B. & Zinder, S.H. (2006). Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442, 192194.CrossRefGoogle ScholarPubMed
Burns, R.G. & Fisher, D.S. (1990). Iron–sulfur mineralogy of Mars: magmatic evolution and chemical weathering products. J. Geophys. Res. 95, 1441514421.CrossRefGoogle Scholar
Burns, R.G. & Fisher, D.S. (1993). Rates of oxidative weathering on the surface of Mars. J. Geophys. Res. 98, 33653372.CrossRefGoogle Scholar
Cano, R.J. & Borucki, M. (1995). Revival and identification of bacterial spores in 25 to 40 million year old Dominican amber. Science 268, 10601064.CrossRefGoogle ScholarPubMed
Cisar, J.O., Xu, D.Q., Thompson, J., Swaim, W., Hu, L. & Kopecko, D.J. (2000). An alternative interpretation of nanobacteria-induced biomineralization. Proc. Natl. Acad. Sci. U.S.A. 97, 11 51111 515.CrossRefGoogle ScholarPubMed
Clark, B. (2001). Planetary interchange of bioactive material: probability factors and implications. Orig. Life Evol. Biosph. 31, 185197.CrossRefGoogle ScholarPubMed
Clemett, S.J., Dulay, M.T., Seb Gillette, J., Chillier, X.D.F., Mahajan, T.B. & Zare, R.N. (1998). Evidence for extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH84001. Faraday Discuss. 109, 417436.CrossRefGoogle Scholar
Clifford, S.M. & Parker, T.J. (2001). The evolution of the martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 4079.CrossRefGoogle Scholar
Cohen, M.D., Flagan, R.C. & Seinfel, J.H. (1987). Studies of concentrated electrolyte solutions using the electrodynamic balance, 1, water activities for single-electrolyte solutions. J. Phys. Chem. 91, 45634574.CrossRefGoogle Scholar
Colaprete, A. & Toon, O.B. (2003). Carbon dioxide clouds in an early dense Martian atmosphere. J. Geophys. Res. Planets 108, E4, 5025, doi:10.1029/2002JE001967.CrossRefGoogle Scholar
Daly, M.J. et al. (2007). Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biology 5, doi:10.1371/journal.pbio.0050092.CrossRefGoogle ScholarPubMed
Davies, P.C.W. (1996). The transfer of viable microorganisms between planets. In Ciba Foundation Symposium 202 (Evolution of hydrothermal ecosystems on Earth (and Mars?)). Wiley, Chichester.Google Scholar
Davila, A.F., Gomez-Silva, B., de los Rios, A., Ascaso, C., Olivares, H., McKay, C. & Wierzchos, J. (2008). Halite deliquescence facilitates endolithic microbial survival in the hyper–arid core of the Atacama Desert. JGR-Biogeosciences, doi:10.1029/2007JG000561.Google Scholar
de Angelis, M., Morel-Fourcade, M.C., Barnola, J.M., Susini, J. & Duval, P. (2005). Brine micro-droplets and solid inclusions in accreted ice from Lake Vostok (East Antarctica). Geophys. Res. Lett. 32, doi:10.1029/2005GL022460.CrossRefGoogle Scholar
Dohm, J.M., Ferris, J.C., Baker, V.R., Anderson, R.C., Hare, T.M., Strom, R.G., Barlow, N.G., Tanaka, K.L., Klemaszewski, J.E. & Scott, D.H. (2001). Ancient drainage basin of the Tharsis region, Mars: potential source for outflow channel systems and putative oceans or paleolakes. J. Geophys. Res. 106(32), 943958.Google Scholar
Dohm, J.M., Ferris, J.C., Barlow, N.G., Baker, V.R., Mahaney, W.C., Anderson, R.C. & Hare, T.M. (2004). The Northwestern Slope Valleys (NSVs) region, Mars: a prime candidate site for the future exploration of Mars, Planet. Space Sci. 52, 189198.CrossRefGoogle Scholar
Ebert, M., Inerle-Hof, M. & Weinbruch, S. (2002). Environmental scanning electron microscopy as a new technique to determine the hygroscopic behavior of individual aerosol particles. Atm. Environ. 36, 59095916.CrossRefGoogle Scholar
Elwood Madden, M.E., Ulrich, S.M., Onstott, T.C. & Phelps, T.J. (2007). Salinity-induced hydrate dissociation: A mechanism for recent CH4 release on Mars. Geophys. Res. Lett. 34, L11202, doi:10.1029/2006GL029156.CrossRefGoogle Scholar
Eschenbach, D.A., Davick, P.R., Williams, B.L., Klebanoff, S.J., Young–Smith, K., Critchlow, C.M. & Holmes, K.K. (1989). Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J. Clin. Microbiol. 27, 251256.CrossRefGoogle ScholarPubMed
Fairén, A.G., Dohm, J.M., Baker, V.R., de Pablo, M.A., Ruiz, J., Ferris, J. & Anderson, R. (2003). Episodic flood inundations of the northern plains of Mars. Icarus 165, 5367.CrossRefGoogle Scholar
Fairén, A.G., Fernández-Remolar, D., Dohm, J.M., Baker, V.R. & Amils, R. (2004). Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431, 423426.CrossRefGoogle ScholarPubMed
Fajardo-Cavazos, P., Link, L., Melosh, J. & Nicholson, W.L. (2005). Bacillus subtilis spores on artificial meteorites survive hypervelocity atmospheric entry: implications for lithopanspermia. Astrobiology 5, 726736.CrossRefGoogle ScholarPubMed
Fernandez-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R. & Knoll, A.H. (2005). The Río Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. EPSL 240, 149167.CrossRefGoogle Scholar
Fernandez-Remolar, D., Gómez, F., Prieto-Ballesteros, O., Schelble, R.T., Rodríguez, N. & Amils, R. (2008). Some ecological mechanisms to generate habitability in planetary subsurface areas by chemolithotrophic communities: the Rio Tinto subsurface ecosystem as a model system. Astrobiology 8, 157174.CrossRefGoogle Scholar
Finegold, L. (1996). Molecular and biophysical aspects of adaptation of life to temperatures below the freezing point. Adv. Space Res. 18, 8795.CrossRefGoogle Scholar
Fisk, M.R., Popa, R., Mason, O.U., Storrie-Lombardi, M.C. & Vicenzi, E.P. (2006). Iron-magnesium silicate bioweathering on Earth (and Mars?). Astrobiology 6, 4868.CrossRefGoogle ScholarPubMed
Folk, R.L. (1993). SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J. Sedim. Petrol. 63, 990999.Google Scholar
Folk, R.L. & Taylor, L.A. (2002). Nanobacterial alteration of pyroxenes in Martian meteorite ALH84001. Meteorit. Planet. Sci. 37, 10571070.CrossRefGoogle Scholar
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. (2004). Detection of methane in the atmosphere of Mars. Science 306, 17581761.CrossRefGoogle ScholarPubMed
Formisano, V. (2005). The search for life on mars with PFS: methane, formaldehyde and water. In Abstracts from the 1st Mars Express Science Conference, p. 113. European Space Research and Technology Centre (ESTEC), Noordwijk, The Netherlands.Google Scholar
Frankel, B.R. & Bazylinski, D.A. (2003). Biologically induced mineralization by bacteria. In: Reviews in Mineralogy and Geochemistry, eds Dove, P.M., De Yoreo, J.J. & Weiner, S., pp. 217247. Mineralogical Society of America/Geochemistry Society.Google Scholar
French, H.M. (1976). In: The Periglacial Environment (Addison-Wesley Longman Limited). Edinburgh Gate, Harlow.Google Scholar
Friedmann, E.I.Wierzchos, J., Ascaso, C. & Winklhofer, M. (2001). Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin. Proc. Natl. Acad. Sci. U.S.A. 98, 21762181.CrossRefGoogle ScholarPubMed
Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigel, H. & de Wit, M. (2004). Early life recorded in Archean pillow lavas. Science 304, 578581.CrossRefGoogle ScholarPubMed
Gendrin, A. et al. (2005). Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307, 15871591.CrossRefGoogle ScholarPubMed
Gilichinsky, D.A. et al. (2007). Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7, 275311.CrossRefGoogle ScholarPubMed
Gibson, E.K., McKay, D.S., Thomas-Keprta, K.L., Wentworth, S.J., Westall, F., Steele, A., Romanek, C.S., Bell, M.S. & Toporski, J. (2001). Life on Mars: evaluation of the evidence within Martian meteorites ALH84001, Nakhla, and Shergotty. Precambrian Res 106, 1534.CrossRefGoogle Scholar
Gladman, B., Dones, L., Levison, H.F. & Burns, J.A. (2005). Impact seeding and reseeding in the inner Solar System. Astrobiology 5, 483496.CrossRefGoogle ScholarPubMed
Golden, D.C., Ming, D.W., Morris, R.V., Brearley, A.J., Lauer, H.V., Treiman, A.H., Zolensxy, M.E., Schwandt, C.S., Lofgren, G.E. & McKay, G.A. (2004). Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. Am. Mineral. 89, 681695.CrossRefGoogle Scholar
Golubic, S., Friedmann, E.I. & Schneider, J. (1981). The lithobiontic ecological niche, with special reference to microorganisms. J. Sediment. Petrol. 51, 475478.Google Scholar
Grasby, S.E., Allen, C.C., Longazo, T.G., Lisle, J.T., Griffin, D.W. & Beauchamp, B. (2003). Supraglacial sulfur springs and associated biological activity in the Canadian High Arctic–signs of life beneath the ice. Astrobiology 3, 583596.CrossRefGoogle ScholarPubMed
Griffith, L.L. & Shock, E.L. (1997). Hydrothermal hydration of Martian crust: illustration via geochemical model calculations. J. Geophys. Res. 102, 91359143.CrossRefGoogle ScholarPubMed
Gulick, V.C. (2001). Origin of the valley networks on Mars: a hydrological perspective. Geomorphology 37, 241268.CrossRefGoogle Scholar
Hanson, R.S. & Hanson, T.E. (1996). Methanotrophic bacteria. Microbiol Rev. 60, 439471.CrossRefGoogle ScholarPubMed
Haskin, L.A. et al. (2005). Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature 436, 6669.CrossRefGoogle ScholarPubMed
Head, J.W., Kreslavsky, M., Hiesinger, H., Ivanov, M.A., Pratt, S., Seibert, N., Smith, D.E. & Zuber, M.T. (1998). Oceans in the past history of Mars: test for their presence using Mars Orbiter Laser Altimeter (MOLA) data. Geophys. Res. Lett. 25, 44014404.CrossRefGoogle Scholar
Head, J., Mustard, J., Kreslavsky, M., Milliken, R. & Marchant, D. (2003). Recent ice ages on Mars. Nature 426, 797802.CrossRefGoogle ScholarPubMed
Head, J.W. et al. (2005). Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434, 346351.CrossRefGoogle ScholarPubMed
Heldmann, J.L. & Mellon, M.T. (2004). Observations of Martian gullies and constraints on potential formation mechanisms. Icarus 168, 285304.CrossRefGoogle Scholar
Heldmann, J.L., Toon, O.B., Pollard, W.H., Mellon, M.T., Pitlick, J., McKay, C.P. & Andersen, D.T. (2005). Formation of Martian gullies by the action of liquid water flowing under current martian environmental conditions. J. Geophys. Res. 110, doi:10.1029/2004JE002261.Google Scholar
Holm, N.G. (1992). Marine hydrothermal systems and the origin of life. In SCOR Working Group 91. Kluwer, Dordrecht.Google Scholar
Hood, L.L. & Zakharian, A. (2001). Mapping and modeling of magnetic anomalies in northern polar regions of Mars. J. Geophys. Res. 106, 14 60114 620.CrossRefGoogle Scholar
Horneck, G. (1981). Survival of microorganisms in space: a review. Adv. Space Res. 1, 3948.CrossRefGoogle ScholarPubMed
Horneck, G. (1993). Responses of Bacillus subtilis spores to the space environment: results from experiments in space. Orig. Life Evol. Biosph. 23, 3752.CrossRefGoogle Scholar
Horneck, G. (2006). Bacterial spores survive simulated meteorite impact. In Biological Processes Associated with Impact Events. pp. 4153. Springer, Berlin.CrossRefGoogle Scholar
Horneck, G., Bücker, H. & Reitz, G. (1994). Long-term survival of bacterial spores in space. Adv. Space Res. 14, 4145.CrossRefGoogle ScholarPubMed
Horowitz, N.H., Hobby, G.L. & Hubbard, J.S. (1976). The Viking carbon assimilation experiments: interim report. Science 194, 13211322.CrossRefGoogle ScholarPubMed
Horowitz, N.H., Hobby, G.L. & Hubbard, J.S. (1977) Viking on Mars: the Viking carbon assimilation experiments. J. Geophys. Res. 82, 46594662.CrossRefGoogle Scholar
Houtkooper, J.M. & Schulze-Makuch, D. (2007a). A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int. J. Astrobiology 6, 147152.CrossRefGoogle Scholar
Houtkooper, J.M. & Schulze-Makuch, D. (2007b). The hydrogen peroxide–water hypothesis for life on Mars and the problem of detection. In Instruments, Methods, and Missions for Astrobiology X, 6640N, eds Hoover, R.B., Levin, G.V., Rozanov, A.Y. & Davies, P.C.W. (Proc. SPIE, Vol. 6694).Google Scholar
Howard, A.D. (2007). Simulating the development of martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing. Geomorphology 91, 332363.CrossRefGoogle Scholar
Hubbard, J.S. (1976). The pyrolytic release experiment: measurement of carbon assimilation. Origins Life Evol. Bios. 7, 281292.CrossRefGoogle ScholarPubMed
Hurowitz, J.A. & McLennan, S.M. (2007). A ~3.5 Ga record of water-limited, acidic weathering conditions on Mars. EPSL 260, 432443.CrossRefGoogle Scholar
Hynek, B.M. (2004). Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani. Nature 431, 156159.CrossRefGoogle ScholarPubMed
Imai, E., Honda, H., Hatori, K., Brack, A. & Matsuno, K. (1999). Elongation of oligopeptides in a simulated submarine hydrothermal system. Science 283, 831833.CrossRefGoogle Scholar
Jaeger, W.L., Keszthelyi, L.P., McEwen, A.S., Dundas, C.M. & Russell, P.S. (2007). Athabasca Valles, Mars: a lava-draped channel system. Science 317, 17091711.CrossRefGoogle Scholar
Jakosky, B.M. & Phillips, R.J. (2001). Mars' volatile and climate history. Nature 412, 237244.CrossRefGoogle ScholarPubMed
Jull, A.J.T., Courtney, C., Jeffrey, D.A. & Beck, J.W. (1998). Isotopic evidence for a terrestrial source of organic compounds found in martian meteorites Allan Hills 84001 and Elephant Moraine 79001. Science 279, 366369.CrossRefGoogle ScholarPubMed
Junge, K., Eicken, H. & Deming, J.W. (2004). Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. App. Environ. Microbiol. 70, 550557.CrossRefGoogle Scholar
Kajander, E.O. & Ciftcioglu, N. (1998). Nanobacteris: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc. Natl. Acad. Sci. U.S.A. 95, 82748279.CrossRefGoogle ScholarPubMed
Kajander, E.O., Kuronen, I., Akerman, K., Pelttari, A. & Ciftcioglu, N. (1998). Nanobacteria from blood, the smallest culturable autonomously replicating agent on Earth. Proc. SPIE 3111, 420428.CrossRefGoogle Scholar
Kargel, J.S. (2004). Mars: A Warmer Wetter Planet, p. 557. Praxis-Springer, New York.Google Scholar
Kasting, J.F. (1997). Warming early Earth and Mars. Science 276, 12131215.CrossRefGoogle ScholarPubMed
Kelley, D.S., Karson, J.A., Blackman, D.K., Früh-Green, G., Gee, J., Butterfield, D.A., Lilley, M.D., Olson, E.J., Schrenk, M.O. & Roe, K.R. (2001). An off-axis hydrothermal field discovered near the Mid-Atlantic Ridge at 30°N. Nature 412, 145149.CrossRefGoogle Scholar
Kelley, D.S. et al. (2005). A serpentinite-hosted submarine ecosystem: the Lost City hydrothermal field. Science 307, 14281434.CrossRefGoogle ScholarPubMed
Kerr, R.A. (2004). Heavy breathing on Mars? Science 306, 29.CrossRefGoogle ScholarPubMed
Kirschvink, J.L., Maine, A.T. & Vali, H. (1997). Paleomagnetic evidence of a low-temperature origin of carbonate in the Martian meteorite ALH84001. Science 275, 16291633.CrossRefGoogle ScholarPubMed
Klein, H.P. (1978). The Viking biological experiments on Mars. Icarus 34, 666674.CrossRefGoogle Scholar
Klein, H.P. (1999) Did Viking discover life on Mars? Orig. Life Evol. Biosph. 29, 625631.CrossRefGoogle ScholarPubMed
Klein, H.P. et al. (1976). The Viking biological investigation: preliminary results. Science 194, 99105.CrossRefGoogle ScholarPubMed
Knott, S.F., Ash, R.D. & Turner, G. (1995). 40Ar-39Ar Dating of ALH 84001: evidence for the early bombardment of Mars (abstract). Lunar Planet. Sci. 26, 765766.Google Scholar
Koike, J., Oshima, T., Koike, K.A., Taguchi, H., Tanaka, R., Nishimura, K. & Miyaji, M. (1991). Survival rates of some terrestrial microorganisms under simulated space conditions. Adv. Space Res. 12(4), 271(4)274.CrossRefGoogle Scholar
Komatsu, G., Dohm, J.M. & Hare, T.M. (2004). Hydrogeologic processes of large-scale tectonomagmatic complexes in Mongolia-southern Siberia and on Mars. Geology 32, 325328.CrossRefGoogle Scholar
Komeili, A., Li, Z., Newmann, D.A. & Jensen, G.J. (2006). Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242245.CrossRefGoogle ScholarPubMed
Kompanichenko, V.N. (1996). Transition of precellular organic microsystems to a biotic state: environment and mechanism. Nanobiology 4, 3945.Google Scholar
Kotelnikova, S. (2002). Microbial production and oxidation of methane in deep subsurface. Earth Sci. Rev. 58, 367395.CrossRefGoogle Scholar
Krasnopolsky, V.A. (2007). Long-term spectroscopic observations of Mars using IRTF/CSHELL: mapping of O2 dayglow, CO, and search for CH4. Icarus 190, 93102.CrossRefGoogle Scholar
Krasnopolsky, V.A., Maillard, J.P. & Owen, T.C. (2004). Detection of methane in the Martian atmosphere: Evidence for life? Icarus 172, 537547.CrossRefGoogle Scholar
Laskar, J., Levrard, B. & Mustard, J.F. (2002). Orbital forcing of the Martian polar layered deposits. Nature 419, 375377.CrossRefGoogle ScholarPubMed
Leman, L., Orgel, L. & Reza-Ghadiri, M. (2004). Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306, 283286.CrossRefGoogle ScholarPubMed
Levin, G.V. (1997). The Viking Labeled Release Experiment and life on Mars. In Proc. Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, 29 July–1 August 1997, San Diego, CA.Google Scholar
Levin, G.V. (2007). Possible evidence for panspermia: the labeled release experiment. Int. J. Astrobiol. 6, 95108.CrossRefGoogle Scholar
Levin, G.V. & Straat, P.A. (1976). Viking labeled release biology experiment: interim results. Science 194, 13221329.CrossRefGoogle ScholarPubMed
Levin, G.V. & Straat, P.A. (1977). Recent results from the Viking labeled release experiment on Mars. J. Geophys. Res. 82, 46634667.CrossRefGoogle Scholar
Levin, G.V. & Straat, P.A. (1981). A search for a nonbiological explanation of the Viking Labeled Release Life Detection Experiment. Icarus 45, 494516.CrossRefGoogle Scholar
Levrard, B., Foget, F., Montmessin, F. & Laskar, J. (2004). Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature 431, 10721075.CrossRefGoogle ScholarPubMed
Lyons, J.R., Manning, C. & Nimmo, F. (2005). Formation of methane on Mars by fluid–rock interaction in the crust. Geophys. Res. Lett. 32, doi:10.1029/2004GL022161.CrossRefGoogle Scholar
Mahaney, W.C., Dohm, J.M., Baker, V.R., Newsom, H.E., Malloch, D., Hancock, R.G.V., Campbell, I., Sheppard, D. & Milner, W.M. (2001). Morphogenesis of Antarctic paleosols: Martian analogue. Icarus 154, 113130.CrossRefGoogle Scholar
Malin, M.C. & Edgett, K.S. (2000a). Sedimentary rocks of early Mars. Science 290, 19271937.CrossRefGoogle ScholarPubMed
Malin, M.C. & Edgett, K.S. (2000b). Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 23302335.CrossRefGoogle ScholarPubMed
Malin, M.C. & Edgett, K.S. (2003). Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 19311934.CrossRefGoogle ScholarPubMed
Malin, M.C., Edgett, K.S., Posiolova, L.V., McColley, S.M. & Noe Dobrea, E.Z. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 15731577.CrossRefGoogle ScholarPubMed
Mancinelli, R.L. (1989). Peroxides and the survivability of microorganisms on the surface of Mars. Adv. Space Res. 9, 191195.CrossRefGoogle ScholarPubMed
Mancinelli, R. & Landheim, R. (2002). Mars, permafrost and halophiles [abstract 6]. In International Workshop on Water in the Upper martian Surface, Abstracts (NAI Publication, no. 76). NASA Astrobiology Institute, Potsdam, Germany.Google Scholar
Mancinelli, R.L. & Banin, A. (2003). Where is the nitrogen on Mars? Int. J. Astrobiol. 2, 217225.CrossRefGoogle Scholar
Mancinelli, R.L., White, M.R. & Rothschild, L.J. (1998). Biopan survival I: exposure of the osmophiles Synechococcus sp. (Nageli) and Haloarcula sp. to the space environment. Adv. Space Res. 22, 327334.CrossRefGoogle Scholar
Mancinelli, R.L., Fahlen, T.F., Landheim, R. & Klovstad, M.R. (2004). Brines and evaporites: analogs for martian life, Adv. Space Res. 33, 12441246.CrossRefGoogle Scholar
Max, M.D. & Clifford, S.M. (2000). The state, potential distribution, and biological implications of methane in the martian crust. J. Geophys. Res. 105, 41654171.CrossRefGoogle Scholar
McEwen, A.S. et al. (2007). A closer look at water-related geologic activity on Mars. Science 317, 17061709.CrossRefGoogle Scholar
McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. & Zare, R.N. (1996). Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273, 924930.CrossRefGoogle ScholarPubMed
McKay, C.P., Friedmann, E.I., Frankel, R.B. & Bazylinski, D.A. (2003). Magnetotactic bacteria on Earth and on Mars. Astrobiology 2, 263270.CrossRefGoogle Scholar
McKay, D.S., Gibson, E. Jr., Thomas-Keprta, K. & Vali, H. (1997). Reply. Nature, 390, 455.CrossRefGoogle Scholar
Melosh, H.J. (1988). The rocky road to panspermia. Nature 332, 687688.CrossRefGoogle ScholarPubMed
MEPAG (2007) COSPAR Colloquium on Mars Special Regions. 18–20 September 2007, Rome, Italy.Google Scholar
Mikucki, J.A. & Priscu, J.C. (2004). Microbial life in Blood Falls: an ancient Antarctic ecosystem. In Proc. 2nd Conf. on Early Mars, Abstract #8023.Google Scholar
Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., Gladman, B., Horneck, G., Lindegren, L., Melosh, H.J., Rickman, H., Valtonen, M. & Zheng, J.Q. (2000). Natural transfer of viable microbes in space. Part 1: From Mars to Earth and Earth to Mars. Icarus 145, 391427.CrossRefGoogle Scholar
Min, K. & Reiners, P.W. (2007). High-temperature Mars-to-Earth transfer of meteorite ALH84001. EPSL, 260, 7285.CrossRefGoogle Scholar
Mittlefehldt, D.W. (1994). ALH84001, a cumulate orthopyroxenite member of the SNC meteorite group. Meteoritics, 29, 214221.CrossRefGoogle Scholar
Moreno, M.A. (1988). Microorganism transport from Earth to Mars. Nature 336, 209.CrossRefGoogle Scholar
Mountfort, D.O., Kaspar, H.F., Asher, R.A. & Sutherland, D. (2003). Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo ice shelf, near Bratina Island, Antarctica. App. Environment. Microbiol. 69, 583592.CrossRefGoogle ScholarPubMed
Mumma, M.J., Novak, R.E., DiSanti, M.A. & Bonev, B.P. (2003). A sensitive search for methane on Mars. Am. Astron. Soc. Bull. 35, 937938.Google Scholar
Mumma, M.J., DiSanti, M.A., Novak, R.E., Bonev, B.P., Dello Russo, N., Hewagama, T. & Smith, M. (2005). Detection and mapping of methane and water on Mars: evidence for intense local enhancements in methane. Astrobiology 5, 300301.Google Scholar
Murray, J.B. et al. (2005). Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator. Nature 434, 352356.CrossRefGoogle ScholarPubMed
Mustard, J.F., Poulet, F., Head, J.W., Mangold, N., Bibring, J.-P., Pelkey, S.M., Fassett, C.I., Langevin, Y. & Neukum, G. (2007). Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian, J. Geophys. Res. 112, doi:10.1029/2006JE002834.Google Scholar
National Research Council (1999). Proc. Workshop on Size Limits of Very Small Microorganisms. Space Studies Board, National Academies Press.Google Scholar
Navarro-González, R. et al. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 7, 10181021.CrossRefGoogle Scholar
Navarro-González, R. et al. (2006). The limitations on organic detection in Mars-like soils by thermal volatilization–gas chromatography–MS and their implications for the Viking results. Proc. Natl. Acad. Sci. U.S.A. 103, 16 08916 094.CrossRefGoogle ScholarPubMed
Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J. & Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548572.CrossRefGoogle ScholarPubMed
Nicholson, W.L., Fajardo-Cavazos, P., Langenhorst, F. & Melosh, H.J. (2006). Bacterial spores survive hypervelocity launch by spallation: implications for lithopanspermia. In Proc. Lunar Planet Sci. Conf. XXXVII, #1808.Google Scholar
Onstott, T.C., McGown, D., Kessler, J., Lollar, B.S., Lehmann, K.K. & Clifford, S.M. (2006). Martian CH4: sources, flux, and detection. Astrobiology 6, 377–295.CrossRefGoogle ScholarPubMed
Osterloo, M.M., Hamilton, V.E., Bandfield, J.L., Glotch, T.D., Baldridge, A.M., Christensen, P.R., Tornabene, L.L. & Anderson, F.S. (2008). Chloride-bearing materials in the southern highlands of Mars. Science 319, 16511654.CrossRefGoogle ScholarPubMed
Oyama, V.I. (1972). The gas exchange experiment for life detection: The Viking Mars Lander. Icarus 16: 167184.CrossRefGoogle Scholar
Oyama, V.I. & Berdahl, B.J. (1977). The Viking gas exchange experiment results from Chryse and Utopia surface samples. J. Geophys. Res. 82, 46694676.CrossRefGoogle Scholar
Oyama, V.I. & Berdahl, B.J. (1979). A model for martian surface chemistry. J. Mol. Evol. 14, 199210.CrossRefGoogle Scholar
Oyama, V.I., Berdahl, B.J. & Carle, G.C. (1977). Preliminary findings of the Viking gas exchange experiment and a model for Martian surface chemistry. Nature 265, 110114.CrossRefGoogle Scholar
Oze, C. & Sharma, M. (2005). Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32, doi:10.1029/2005GL022691.CrossRefGoogle Scholar
Parker, T.J., Gorsline, D.S., Saunders, R.S., Pieri, D.C. & Schneeberger, D.M. (1993). Coastal geomorphology of the martian northern plains. J. Geophys. Res. 98, 11 06111 078.CrossRefGoogle Scholar
Pellenbarg, R.E., Max, M.D. & Clifford, S.M. (2003). Methane and carbon dioxide hydrates on Mars: potential origins, distribution, detection, and implications for future in situ resource utilization. J. Geophys. Res. 108, doi:10.1029/2002JE001901.Google Scholar
Petersen, N., von Dobeneck, T. & Vali, H. (1986). Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature 320: 611661.CrossRefGoogle Scholar
Perron, J.T., Mitrovica, J.X., Manga, M., Matsuyama, I. & Richards, M.A. (2007). Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature 447, 840843.CrossRefGoogle ScholarPubMed
Phillips, R.J. et al. (2001). Ancient geodynamics and global-scale hydrology on Mars. Science 291, 25872591.CrossRefGoogle ScholarPubMed
Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B., Gómez, C. & the Omega Team (2005). Phyllosilicates on Mars and implications for early Martian climate. Nature 438, 623627.CrossRefGoogle ScholarPubMed
Prieto-Ballesteros, O., Kargel, J.S., Fairén, A.G., Fernández-Remolar, D., Dohm, J.M. & Amils, R. (2006). Interglacial clathrate destabilization in Mars: possible contributing source of its atmospheric methane. Geology 34, 149152.CrossRefGoogle Scholar
Priscu, J.C., Fritsen, C.H., Adams, E.E., Giovannoni, S.J., Paerl, H.W., McKay, C.P., Doran, P.T., Gordon, D.A., Lanoil, B.D. & Pinckney, J.L. (1998). Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280, 20952098.CrossRefGoogle Scholar
Quinn, R.C. & Zent, A.P. (1999). Peroxide-modified titanium dioxide: a cemical analog of putative Martian soil oxidants. Orig. Life Evol. Biosph. 29, 5972.CrossRefGoogle Scholar
Rathbun, J.A. & Squyres, S.W. (2002). Hydrothermal systems associated with martian impact craters. Icarus 157, 365372.CrossRefGoogle Scholar
Rivkina, E.M., Friedmann, E.I., McKay, C.P. & Gilichinsky, D.A. (2000). Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66, 32303233.CrossRefGoogle ScholarPubMed
Romanek, C.S., Grady, M.M., Wright, I.P., Mittlefehldt, D.W., Socki, R.A., Pillinger, C.T. & Gibson, E.K. Jr. (1994). Record of fluid–rock interactions on Mars from the meteorite ALH 84001. Nature 372, 655657.CrossRefGoogle Scholar
Rohde, R.A. & Price, P.B. (2007). A new habitat in glacial ice: metabolism by solid-state diffusion to isolated microbes. Proc. Natl. Acad. Sci. U.S.A. 104, 16 59216 597.CrossRefGoogle Scholar
Rosing, M.T. (1999). 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283, 674676.CrossRefGoogle ScholarPubMed
Roslev, P., Iversen, N. & Henriksen, K. (1997). Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Appl. Environ. Microbiol. 63, 874880.CrossRefGoogle ScholarPubMed
Rothschild, L.J. & Mancinelli, R.L. (2001). Life in extreme environments. Nature 409, 10921101.CrossRefGoogle ScholarPubMed
Ruiz, J., Fairén, A.G., Dohm, J.M. & Tejero, R. (2004). Thermal isostasy and deformation of possible paleoshorelines on Mars. Planet. Space Sci. 52, 12971301.CrossRefGoogle Scholar
Russell, N.J. (1990). Cold adaptation of microorganisms. Phil. Trans. R. Soc. London B Biol. Sci. 326, 595611.Google ScholarPubMed
Ryan, S., Dlugokencky, E.J., Tans, P.P. & Trudeau, M.E. (2006). Mauna Loa volcano is not a methane source: implications for Mars. Geophys. Res. Lett. 33, doi:10.1029/2006GL026223.CrossRefGoogle Scholar
Ryan, C.S. & Kleinberg, I. (1995). Bacteria in human mouths involved in the production and utilization of hydrogen peroxide. Arch. Oral. Biol. 40, 753763.CrossRefGoogle ScholarPubMed
Saffary, R., Nandakumar, R., Spencer, D., Robb, F.T., Davila, J.M., Swartz, M., Ofman, L., Thomas, R.J. & DiRuggiero, J. (2002). Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight. FEMS Microbiol. Lett. 215, 163168.CrossRefGoogle ScholarPubMed
Sassen, R., Milkov, A.V., Ozgul, E., Roberts, H.H., Hunt, J.L., Beeunas, M.A., Chanton, J.P., DeFreitas, D.A. & Sweet, S.T. (2003). Gas venting and subsurface charge in the Green Canyon area, Gulf of Mexico; continental slope evidence of a deep bacterial methane source? Org. Geochem. 34, 14551464.CrossRefGoogle Scholar
Scheffel, A., Gruska, M., Faivre, D., Linaroudis, A., Plitzko, J.M. & Schüler, D. (2006). An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110114.CrossRefGoogle ScholarPubMed
Schopf, J.W. & Packer, B.M. (1987). Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science 237, 7073.CrossRefGoogle ScholarPubMed
Schopf, J.W. (1993). Microfossils of the early Archean Apex Chert; new evidence of the antiquity of life. Science 260, 640645.CrossRefGoogle ScholarPubMed
Schulze-Makuch, D. & Irwin, L.N. (2004). Life in the Universe: Expectations and Constraints, p. 172. Springer, Berlin.Google Scholar
Schulze-Makuch, D., Irwin, L.N., Lipps, J.H., LeMone, D., Dohm, J.M. & Fairén, A.G. (2005). Scenarios for the evolution of life on Mars. J.Geophys. Res. 110, E12S23, doi:10.1029/2005JE002430.Google Scholar
Schulze-Makuch, D., Dohm, J.M., Fan, C., Fairén, A.G., Rodriguez, J.A.P., Baker, V.R. & Fink, W. (2007). Exploration of hydrothermal targets on Mars. Icarus 189, 308324.CrossRefGoogle Scholar
Schulze-Makuch, D., Turse, C., Houtkooper, J.M. & McKay, C.P. (2008). Testing the H2O2–H2O hypothesis for life on Mars with the TEGA instrument on the Phoenix Lander. Astrobiology 8, 205214.CrossRefGoogle ScholarPubMed
Scott, E.R., Yamaguchi, A. & Krot, A.N. (1997). Petrological evidence for shock melting of carbonates in the Martian meteorite ALH84001. Nature 22, 377379.CrossRefGoogle Scholar
Segura, T., Toon, O.B., Colaprete, A. & Zahnle, K. (2002). Environmental effects of large impacts on Mars. Science, 298, 19771980.CrossRefGoogle ScholarPubMed
Sleep, N.H. & Zahnle, K. (1998). Refugia from asteroid impacts on early Mars and the early Earth. J. Geophys. Res. 103(28), 529544.Google Scholar
Squyres, S.W. et al. (2004). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306, 17091714.CrossRefGoogle ScholarPubMed
Stevens, T.O. & McKinley, J.P. (1995). Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450455.CrossRefGoogle Scholar
Stöffler, D., Horneck, G., Ott, S., Hornemann, U., Cockell, C.S., Moeller, R., Meyer, C., de Vera, J.-P., Fritz, J. & Artemieva, N.A. (2007). Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like planets. Icarus 186, 585588.CrossRefGoogle Scholar
Tanenbaum, S.W. (1956). The metabolism of Acetobacter peroxidans. I. Oxidative enzymes. Biochim. Biophys. Acta 21, 335342.CrossRefGoogle Scholar
Taylor, A.P., Barry, J.C. & Webb, R.I. (2001). Structural and morphological anomalies in magnetosomes: possible biogenic origin for magnetite in ALH84001. J. Microsc. 201, 84106.CrossRefGoogle ScholarPubMed
Thomas-Keprta, K.L., Bazylinski, D.A., Kirschvink, J.L., Clemett, S.J., McKay, D.S., Wentworth, S.J., Vali, H., Gibson, E.K. & Romanek, C.S. (2000). Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim. Cosmochim. Acta 64, 40494081.CrossRefGoogle ScholarPubMed
Thomas-Keprta, K.L., Clemett, S.J., Bazylinski, D.A., Kirschvink, J.L., McKay, D.S., Wentworth, S.J., Vali, H., Gibson, E.K., McKay, M.F. & Romanek, C.S. (2001). Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc. Natl. Acad. Sci. U.S.A. 98, 21642169.CrossRefGoogle ScholarPubMed
Thomas-Keprta, K.L., Clemett, S.J., Bazylinski, D.A., Kirschvink, J.L., McKay, D.S., Wentworth, S.J., Vali, H., Gibson, E.K. & Romanek, C.S. (2002). Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl. Environ. Microbiol. 68(8), 36633672.CrossRefGoogle Scholar
Tokuoka, K. (1993). A review: sugar and salt-tolerant yeasts. J. Appl. Microbiol. 74, 101110.Google Scholar
Tung, H.C., Price, P.B., Bramall, N.E. & Vrdoljak, G. (2006). Microorganisms metabolizing on clay grains in 3 km-deep Greenland basal ice. Astrobiology 6, 6986.CrossRefGoogle ScholarPubMed
Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. (2006), Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516519.CrossRefGoogle ScholarPubMed
Uwins, P.J.R., Webb, R.I. & Taylor, P. (1998). Novel nano-organisms from Australian sandstones. Amer. Mineral. 83, 15411550.CrossRefGoogle Scholar
Vestal, J.R. (1988). Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. Appl. Environ. Microbiol. 54, 960965.CrossRefGoogle ScholarPubMed
von Sonntag, C. (1987). The Chemical Basis of Radiation Biology, p. 515. Taylor & Francis, London.Google Scholar
Vreeland, R.H., Rosenzweig, W.D. & Powers, D.W. (2000). Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897900.CrossRefGoogle ScholarPubMed
Walker, J.J., Spear, J.R. & Pace, N.R. (2005). Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434, 10111014.CrossRefGoogle ScholarPubMed
Warren-Rhodes, K.A., Rhodes, K.L., Pointing, S.B., Ewing, S.A., Lacap, D.C., Gómez-Silva, B., Amundson, R., Friedmann, E.I. & McKay, C.P. (2006). Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52, 389398.CrossRefGoogle ScholarPubMed
Wierzchos, J., Ascaso, C. & McKay, C.P. (2006). Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6, 415422.CrossRefGoogle ScholarPubMed
Wilson, S.A., Howard, A.D., Moore, J.M. & Grant, J.A. (2007). Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars. J. Geophys. Res. 112, E08009, doi:10.1029/2006JE002830.Google Scholar
Winfrey, M.R. & Zeikus, J.G. (1977). Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. Environ. Microbiol. 33, 275281.CrossRefGoogle ScholarPubMed
Yen, A.S., Kim, S.S., Hecht, M.H., Frant, M.S. & Murray, B. (2000). Evidence that the reactivity of the Martian soil is due to superoxide ions. Science 289, 19091912.CrossRefGoogle ScholarPubMed
Zent, A.P. & McKay, C.P. (1994). The chemical reactivity of the Martian soil and implications for future missions. Icarus 108, 146157.CrossRefGoogle Scholar
Zolotov, M.Y. & Shock, E.L. (2005). Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars. Geophys. Res. Lett. 32, doi:10.1029/2005GL024253.CrossRefGoogle Scholar