Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T12:29:58.540Z Has data issue: false hasContentIssue false

Bacterial communities in Fe/Mn films, sulphate crusts, and aluminium glazes from Swedish Lapland: implications for astrobiology on Mars

Published online by Cambridge University Press:  05 July 2013

Cassandra L. Marnocha*
Affiliation:
Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR, USA
John C. Dixon
Affiliation:
Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR, USA Department of Geosciences, University of Arkansas, Fayetteville, AR, USA

Abstract

Rock coatings have been observed on Mars by Mars Pathfinder, Viking and the Mars Exploration Rovers. Although rock varnish has been studied for its potential as a biosignature, other types of rock coating have been largely ignored. In Kärkevagge, Swedish Lapland, sulphate crusts, aluminium glazes and Fe/Mn films occur with mineralogies mimicking those observed on the surface of Mars. Molecular analysis and scanning electron microscopy (SEM) were used to investigate the bacterial communities associated with these rock coatings. Molecular techniques revealed differences in community structure and metabolisms associated with the production of secondary minerals between the three coating types. SEM analysis showed evidence of encrustation in mineral coatings in the Fe/Mn films and aluminium glazes, and evidence of abundant microbial communities in all three coating types. These observations provide evidence for bacterial participation in the genesis of rock coatings. For astrobiology on Mars, rock coatings are an attractive biosignature target scientifically and logistically: they are surface environments easily accessible by rovers, endoliths are afforded protection from surface conditions, and evidence of life could potentially be preserved through biomineralization and lithification. This study describes the bacterial communities from rock coatings compatible with martian mineralogy, explores the potential for biologically facilitated rock-coating formation, and supports rock coatings as targets of astrobiological interest on Mars.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, F. et al. (2011). ISME J. 5(10), 16341640.CrossRefGoogle Scholar
Allen, C.C., Probst, L.W., Flood, B.E., Longazo, T.G., Schelble, R.T. & Westall, F. (2004). Icarus 171(1), 2030.CrossRefGoogle Scholar
Altheide, T., Chevrier, V., Nicholson, C. & Denson, J. (2009). Earth Planet. Sci. Lett. 282(1–4), 6978.Google Scholar
Bae, S. & Lee, W. (2013). Geochim. Cosmochim. Acta 114, 144155.CrossRefGoogle Scholar
Baker, B.J. & Banfield, J.F. (2003). FEMS Microbiol. Ecol. 44(2), 139152.Google Scholar
Baker, V., Strom, R., Gulick, V., Kargel, J., Komatsu, G. & Kale, V. (1991). Nature 352, 589594.Google Scholar
Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T. & Penn, R.L. (2000). Science 289(5480), 751754.CrossRefGoogle Scholar
Barnouin-Jha, O.S., Murchie, S.L., Johnson, J., Bell, J.F. III & Morris, R. (2000) In Lunar and Planetary Science Conf. XXXI, vol. 31.Google Scholar
Benzerara, K. & Miot, J. (2011). Origins and Evolution of Life: An Astrobiological Perspective, vol. 6, pp. 450. Cambridge University Press , New York.Google Scholar
Benzerara, K., Miot, J., Morin, G., Kappler, A. & Obst, M. (2008). CLS Activity Report, 2008, pp. 8687.Google Scholar
Beveridge, T. & Fyfe, W. (1985). Can. J. Earth Sci. 22(12), 18931898.CrossRefGoogle Scholar
Beveridge, T.J. (1989). Annu. Rev. Microbiol. 43(1), 147171.Google Scholar
Bibring, J.-P. et al. (2005). Science 307(5715), 15761581.Google Scholar
Bibring, J.-P. et al. (2006). Science 312(5772), 400404.Google Scholar
Bishop, J.L., Murchie, S.L., Pieters, C.M. & Zent, A.P. (2002). J. Geophys. Res. 107(5097), 17.Google Scholar
Bond, P.L., Smriga, S.P. & Banfield, J.F. (2000). Appl. Environ. Microbiol. 66(9), 38423849.CrossRefGoogle Scholar
Brady, K., Bigham, J., Jaynes, W. & Logan, T. (1986). Clays Clay Miner. 34(3), 266274.Google Scholar
Campbell, S.W., Dixon, J.C., Darmody, R.G. & Thorn, C.E. (2001). Geografis. Ann. A: Phys. Geogr. 83(4), 169178.CrossRefGoogle Scholar
Carlson, L. & Schwertmann, U. (1980). Clays Clay Miner. 28, 272280.Google Scholar
Chevrier, V.F. & Altheide, T.S. (2008). Geophys. Res. Lett. 35(22), L22101.CrossRefGoogle Scholar
Chevrier, V.F. & Rivera-Valentin, E.G. (2012). Geophys. Res. Lett. 39(21), L21202.Google Scholar
Christensen, P., Bandfield, J., Clark, R., Edgett, K., Hamilton, V., Hoefen, T., Kieffer, H., Kuzmin, R., Lane, M. & Malin, M. (2000). J. Geophys. Res. 105(E4), 96239642.Google Scholar
Clark, B.C., Baird, A., Rose, H.J. Jr., Toulmin, P. III, Keil, K., Castro, A.J., Kelliher, W.C., Rowe, C.D. & Evans, P.H. (1976). Science 194(4271), 12831288.Google Scholar
Clarke, W.A., Konhauser, K.O., Thomas, J.C. & Bottrell, S.H. (1997). FEMS Microbiol. Rev. 20(3–4), 351361.Google Scholar
Cockell, C.S., Catling, D.C., Davis, W.L., Snook, K., Kepner, R.L., Lee, P. & McKay, C.P. (2000). Icarus 146(2), 343359.Google Scholar
Darmody, R.G., Allen, C.E., Thorn, C.E. & Dixon, J.C. (2001). Geomorphology 41(1), 5362.Google Scholar
Darmody, R.G., Thorn, C.E. & Dixon, J.C. (2007). Geological Soc. Am. Bull. 119(11–12), 14771485.CrossRefGoogle Scholar
Dartnell, L.R., Desorgher, L., Ward, J.M. & Coates, A.J. (2007). Geophys. Res. Lett. 34(2), L02207.Google Scholar
DeLong, E.F. (1992). Proc. Natl. Acad. Sci. USA 89(12), 5685.Google Scholar
Deming, J.W. (2002). Curr. Opin. Microbiol. 5(3), 301309.CrossRefGoogle Scholar
DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P. & Andersen, G.L. (2006). Appl. Environ. Microbiol. 72(7), 50695072.Google Scholar
DiRuggiero, J., Robinson, C.K., Souterre, T., Ravel, J., Fricke, W.F., Ascaso, C., Wierzchos, J. (2012). In Astrobiology Science Conf., April 16–20, 2012, Atlanta, GA. #3106.Google Scholar
Dixon, J.C., Darmody, R.G., Schlyter, P. & Thorn, C.E. (1995). Geografis. Ann. A: Phys. Geogr. 77, 259267.Google Scholar
Dixon, J.C., Thorn, C.E., Darmody, R.G. & Campbell, S.W. (2002). Geolog. Soc. Am. Bull. 114(2), 226238.Google Scholar
Dixon, J.C., Thorn, C.E. & Darmody, R.G. (2008). Z. Geomorphol. Suppl. Issues 52(1), 2749.Google Scholar
Doi, L.T. (1973). Q. J. Speech 59(2), 180185.Google Scholar
Dorn, R.I. (1998). Rock Coatings. Elsevier, Amsterdam, The Netherlands.Google Scholar
Dorn, R.I., Krinsley, D.H., Liu, T., Anderson, S., Clark, J., Cahill, T.A. & Gill, T.E. (1992). Chem. Geol. 99(4), 289298.Google Scholar
Edwards, K.J., Bond, P.L. & Banfield, J.F. (2000). Environ. Microbiol. 2(3), 324332.Google Scholar
Elwood Madden, M.E., Bodnar, R.J. & Rimstidt, J.D. (2004). Nature 431(7010), 821823.CrossRefGoogle Scholar
Eriksson, B. (1982). Data rörande Sveriges temperatur-climat. SMHI Reports. Meteorology and climatology, RMK 39.Google Scholar
Fairén, A.G. et al. (2011). Meteorit. Planet. Sci. 46(12), 18321841.CrossRefGoogle Scholar
Fernández-Remolar, D.C. & Knoll, A.H. (2008). Icarus 194(1), 7285.Google Scholar
Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R. & Knoll, A.H. (2005). Earth Planet. Sci. Lett. 240(1), 149167.CrossRefGoogle Scholar
Fierer, N. & Jackson, R.B. (2006). Proc. Natl. Acad. Sci. USA 103(3), 626631.Google Scholar
Friedmann, E.I. (1982). Science 215(4536), 10451053.CrossRefGoogle Scholar
Gantner, S., Andersson, A.F., Alonso-Sáez, L. & Bertilsson, S. (2011). J. Microbiol. Methods 84(1), 1218.CrossRefGoogle Scholar
Gendrin, A. et al. (2005). Science 307(5715), 15871591.Google Scholar
Ghiorse, W. (1984). Annu. Rev. Microbiol. 38(1), 515550.Google Scholar
Ghiorse, W. & Ehrlich, H. (1992). Catena Suppl. 21, 7599.Google Scholar
Giorgetti, G. & Baroni, C. (2007). Eur. J. Mineral. 19(3), 381389.Google Scholar
Glasby, G. & Macpherson, J. (1981). Desert varnish in southern Victoria land, Antarctica, Department of Scientific and Industrial Research.Google Scholar
Hard, B.C., Walther, C. & Babel, W. (1999). Geomicrobiol. J. 16(4), 267275.Google Scholar
Hinsa-Leasure, S.M., Bhavaraju, L., Rodrigues, J.L., Bakermans, C., Gilichinsky, D.A. & Tiedje, J.M. (2010). FEMS Microbiol. Ecol. 74(1), 103113.CrossRefGoogle Scholar
Huber, T., Faulkner, G. & Hugenholtz, P. (2004). Bioinformatics 20(14), 23172319.Google Scholar
Ishimaru, S. & Yoshikawa, K. (2000). Geografis. Ann. A: Phys. Geogr. 82(1), 4557.Google Scholar
Jamieson, H.E., Robinson, C., Alpers, C.N., Nordstrom, D.K., Poustovetov, A. & Lowers, H.A. (2005). Can. Mineral. 43(4), 12251242.Google Scholar
Johnson, D.B. (1998). FEMS Microbiol. Ecol. 27(4), 307317.Google Scholar
Johnston, J. & Cardile, C. (1984). Chem. Geol. 45(1–2), 7390.Google Scholar
Jukes, T.H. & Cantor, C.R. (1969). Mamm. Protein Metab. III, 21132.CrossRefGoogle Scholar
Junge, K., Eicken, H. & Deming, J.W. (2004). Appl. Environ. Microbiol. 70(1), 550557.CrossRefGoogle Scholar
Kappler, A., Pasquero, C., Konhauser, K.O. & Newman, D.K. (2005). Geology 33(11), 865868.Google Scholar
Kappler, A., Schink, B. & Newman, D.K. (2006). Geobiology 3(4), 235245.Google Scholar
Keith, D.C., Runnells, D.D., Esposito, K.J., Chermak, J.A., Levy, D.B., Hannula, S.R., Watts, M. & Hall, L. (2001). Appl. Geochem. 16(7–8), 947961.Google Scholar
Kimoto, K., Aizawa, T., Urai, M., Ve, N.B., Suzuki, K., Nakajima, M. & Sunairi, M. (2010). Int. J. Syst. Evol. Microbiol. 60(Pt 4), 764768.CrossRefGoogle Scholar
Kleinmann, R.L.P., Crerar, D.A. & Pacelli, R.R. (1981). Miner. Eng. 33(3), 300305.Google Scholar
Klingelhöfer, G. et al. (2004). Science 306(5702), 17401745.Google Scholar
Klingelhöfer, G., DeGrave, E., Morris, R., Alboom, A., Resende, V., Souza, P., Rodionov, D., Schröder, C., Ming, D. & Yen, A. (2007). ICAME 2005, 549554.Google Scholar
Konhauser, K., Lalonde, S. & Phoenix, V. (2008). Geobiology 6(3), 298302.Google Scholar
Konhauser, K.O. (1997). FEMS Microbiol. Rev. 20(3–4), 315326.Google Scholar
Konhauser, K.O., Kappler, A. & Roden, E.E. (2011). Elements 7(2), 8993.CrossRefGoogle Scholar
Krinsley, D., Dorn, R.I. & DiGregorio, B. (2009). Astrobiology 9(6), 551562.Google Scholar
Larese-Casanova, P., Haderlein, S.B. & Kappler, A. (2010). Geochim. Cosmochim. Acta 74(13), 37213734.CrossRefGoogle Scholar
Lazaroff, N., Sigal, W. & Wasserman, A. (1982). Appl. Environ. Microbiol. 43(4), 924938.Google Scholar
Macalady, J.L., Jones, D.S. & Lyon, E.H. (2007). Environ. Microbiol. 9(6), 14021414.Google Scholar
Manga, M., Patel, A., Dufek, J. & Kite, E.S. (2012). Geophys. Res. Lett. 39(1), L01202.Google Scholar
Marnocha, C.L., Chevrier, V.F. & Ivey, D.M. (2011). In Lunar and Planetary Science Conf. XLII, vol. 42, p. 1604.Google Scholar
Matsuoka, N. (1995). Geomorphology 12(4), 323339.CrossRefGoogle Scholar
McKay, C.P. (1993). Relevance of Antarctic Microbial Ecosystems to Exobiology. Wiley-Liss, New York, pp. 593601.Google Scholar
Meier, J., Piva, A. & Fortin, D. (2012). FEMS Microbiol. Ecology. 79, 6984.Google Scholar
Mikucki, J.A. & Priscu, J.C. (2007). Appl. Environ. Microbiol. 73(12), 40294039.CrossRefGoogle Scholar
Miteva, V.I. & Brenchley, J.E. (2005). Appl. Environ. Microbiol. 71(12), 78067818.Google Scholar
Murchie, S., Barnouin-Jha, O., Barnouin-Jha, K., Bishop, J., Johnson, J., McSween, H. & Morris, R. (2004). In Lunar and Planetary Science Conf. XXXV, vol. 35, p. 1740.Google Scholar
Nienow, J.A. & Friedmann, E.I. (1993). Terrestrial Lithophytic (rock) Communities. Wiley-Liss, New York, pp. 343412.Google Scholar
Nienow, J.A., McKay, C.P. & Friedmann, E.I. (1988). Microb. Ecol. 16(3), 271289.Google Scholar
Nordstrom, D.K. & Alpers, C.N. (1999). Proc. Natl. Acad. Sci. USA 96(7), 3455.Google Scholar
Northup, D.E., Snider, J.R., Spilde, M.N., Porter, M.L., van de Kamp, J.L., Boston, P.J., Nyberg, A.M. & Bargar, J.R. (2010). J. Geophys. Res., 115(G2), G02007.Google Scholar
Petrash, D.A., Gingras, M.K., Lalonde, S.V., Pecoits, E. & Konhauser, K.O. (2012). Sediment. Geol., 245246.Google Scholar
Phillips, R.J., Zuber, M.T., Solomon, S.C., Golombek, M.P., Jakosky, B.M., Banerdt, W.B., Smith, D.E., Williams, R.M.E., Hynek, B.M. & Aharonson, O. (2001). Science 291(5513), 25872591.CrossRefGoogle Scholar
Pollack, J., Kasting, J., Richardson, S. & Poliakoff, K. (1987). Icarus 71(2), 203224.Google Scholar
Price, P.B. (2007). FEMS Microbiol. Ecol. 59(2), 217231.CrossRefGoogle Scholar
Rapp, A. (1960). Geografis. Ann. 42(2/3), 65200.Google Scholar
Roh, Y., Zhang, C.L., Vali, H., Lauf, R., Zhou, J. & Phelps, T. (2003). Clays Clay Miner. 51(1), 8395.Google Scholar
Roszak, D. & Colwell, R. (1987). Microbiol. Rev. 51(3), 365379.CrossRefGoogle Scholar
Rothschild, L.J. & Mancinelli, R.L. (2002). Nature 409.Google Scholar
Sagan, C. & Mullen, G. (1972). Science 177(4043), 5256.Google Scholar
Schippers, A., Breuker, A., Blazejak, A., Bosecker, K., Kock, D. & Wright, T.L. (2010). Hydrometallurgy 104(34), 342350.CrossRefGoogle Scholar
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H. & Robinson, C.J. (2009). Appl. Environ. Microbiol. 75(23), 75377541.Google Scholar
Sharp, M., Parkes, J., Cragg, B., Fairchild, I.J., Lamb, H. & Tranter, M. (1999). Geology 27(2), 107110.Google Scholar
Squyres, S.W. et al. (2004). Science 306(5702), 17091714.Google Scholar
Stivaletta, N., López-García, P., Boihem, L., Millie, D.F. & Barbieri, R. (2010). Geomicrobiol. J. 27(1), 101110.CrossRefGoogle Scholar
Strickland, E.L. (1979). In Lunar and Planetary Science Conf. X, vol. 10, pp. 30553077.Google Scholar
Swayze, G., Ehlmann, B., Milliken, R., Poulet, F., Wray, J., Rye, R., Clark, R., Desborough, G., Crowley, J. & Gondet, B. (2008). In American Geophysical Union, Fall Meeting 2008.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). Mol. Biol. Evol. 28(10), 27312739.Google Scholar
Thorn, C.E., Schlyter, J.P.L., Darmody, R.G. & Dixon, J.C. (1999). Permafrost Periglacial Process. 10(4), 317330.Google Scholar
Thorn, C.E., Darmody, R.G., Dixon, J.C. & Schlyter, P. (2001). Geomorphology 41(1), 3752.Google Scholar
Varnali, T. & Edwards, H.G.M. (2013). Planet. Space Sci. 82-83, 128133.Google Scholar
Verplanck, P.L. (ed.) (2008). Understanding contaminants associated with mineral deposits. U.S. Geological Survey Circular.CrossRefGoogle Scholar
Vorobyova, E., Soina, V., Gorlenko, M., Minkovskaya, N., Zalinova, N., Mamukelashvili, A., Gilichinsky, D., Rivkina, E. & Vishnivetskaya, T. (1997). FEMS Microbiol. Rev. 20(3–4), 277290.Google Scholar
Vreeland, R.H., Rosenzweig, W.D. & Powers, D.W. (2000). Nature 407(6806), 897900.Google Scholar
Wang, A. et al. (2006). J. Geophys. Res. 111(E2).Google Scholar
Wang, X., Zeng, L., Wiens, M., Schloßmacher, U., Jochum, K.P., Schröder, H.C. & Müller, W.E.G. (2011). Micron 42(5), 401411.CrossRefGoogle Scholar
Weed, R. & Ackert, R. (1986). S. Afr. J. Sci. 82(9), 315516.Google Scholar
Weed, R. & Norton, S.A. (1991). Dev. Geochem. 6, 327339.Google Scholar
Wierzchos, J., Ascaso, C., Sancho, L.G. & Green, A. (2003). Geomicrobiol. J. 20(1), 1524.Google Scholar
Wierzchos, J., Ascaso, C. & McKay, C.P. (2006). Astrobiology 6(3), 415422.CrossRefGoogle Scholar
Williams, A.J., Buck, B.J., Soukup, D.A. & Merkler, D.J. (2013). Geomorphology 195, 99109.Google Scholar
Williamson, A.J., Morris, K., Shaw, S., Byrne, J.M., Boothman, C. & Lloyd, J.R. (2013). Appl. Environ. Microbiol. 79(11), 33203326.Google Scholar
Wong, F.K., Lacap, D.C., Lau, M.C., Aitchison, J.C., Cowan, D.A. & Pointing, S.B. (2010). Microb. Ecol. 60(4), 730739.Google Scholar
Wynn-Williams, D., Edwards, H. & Garcia-Pichel, F. (1999). Eur. J. Phycol. 34(4), 381391.CrossRefGoogle Scholar
Wynn-Williams, D.D. & Edwards, H.G.M. (2000). Icarus 144(2), 486503.Google Scholar
Yergeau, E., Newsham, K.K., Pearce, D.A. & Kowalchuk, G.A. (2007). Environ. Microbiol. 9(11), 26702682.Google Scholar
Zachara, J.M., Kukkadapu, R.K., Fredrickson, J.K., Gorby, Y.A. & Smith, S.C. (2002). Geomicrobiol. J. 19(2), 179207.Google Scholar