Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:35:32.818Z Has data issue: false hasContentIssue false

Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota

Published online by Cambridge University Press:  12 May 2011

P. Ehrenfreund*
Affiliation:
Leiden Institute of Chemistry, PO Box 9502, 2300 Leiden, The Netherlands Space Policy Institute, Elliott School of International Affairs, Washington, DC, USA
W.F.M. Röling
Affiliation:
Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
C.S. Thiel
Affiliation:
Institute of Medical Physics and Biophysics, CeNTech, University of Münster, 48149, Münster, Germany
R. Quinn
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA
M.A. Sephton
Affiliation:
Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
C. Stoker
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, USA
J.M. Kotler
Affiliation:
Leiden Institute of Chemistry, PO Box 9502, 2300 Leiden, The Netherlands
S.O.L. Direito
Affiliation:
Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
Z. Martins
Affiliation:
Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
G.E. Orzechowska
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
R.D. Kidd
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
C.A van Sluis
Affiliation:
Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
B.H. Foing
Affiliation:
ESA ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands

Abstract

Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and expected life detection targets. We have characterized the mineralogy, organic chemistry and microbiology of ten selected sample sites from the Utah desert in close vicinity to the Mars Desert Research Station (MDRS) during the EuroGeoMars 2009 campaign (organized by International Lunar Exploration Working Group (ILEWG), NASA Ames and ESA ESTEC). Compared with extremely arid deserts (such as the Atacama), organic and biological materials can be identified in a larger number of samples and subsequently be used to perform correlation studies. Among the important findings of this field research campaign are the diversity in the mineralogical composition of soil samples even when collected in close proximity, the low abundances of detectable polycyclic aromatic hydrocarbons (PAHs) and amino acids and the presence of biota of all three domains of life with significant heterogeneity. An extraordinary variety of putative extremophiles, mainly Bacteria and also Archaea and Eukarya was observed. The dominant factor in measurable bacterial abundance seems to be soil porosity and lower small (clay-sized) particle content. However, correlations between many measured parameters are difficult to establish. Field research conducted during the EuroGeoMars 2009 campaign shows that the geological history and depositional environment of the region, as well as the mineralogy influence the ability to detect compounds such as amino acids and DNA. Clays are known to strongly absorb and bind organic molecules often preventing extraction by even sophisticated laboratory methods. Our results indicate the need for further development and optimization of extraction procedures that release biological compounds from host matrices to enable the effective detection of biomarkers during future sampling campaigns on Earth and Mars.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C., Fogel, M., Yabuta, H. & Cody, G.D. (2007). The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 71, 43804403.CrossRefGoogle Scholar
Ansdell, M., Ehrenfreund, P. & McKay, C. (2011). Stepping stones toward global space exploration. Acta Astronaut. 68, 20982113.CrossRefGoogle Scholar
Arvidson, R.E., Ruff, S.W., Morris, R.V., Ming, D.W., Crumpler, L.S., Yen, A.S., Squyres, S.W., Sullivan, R.J., Bell, J.F., Cabrol, N.A. et al. (2008). Spirit Mars rover mission to the Columbia Hills, Gusev Crater: mission overview and selected results from the Cumberland Ridge to Home Plate. J. Geophys. Res. 113, E12S33.CrossRefGoogle Scholar
Aubrey, A., Cleaves, J., Chalmers, J., Skelley, A., Mathies, R., Grunthaner, F., Ehrenfreund, P. & Bada, J. (2006). Sulfate mineral and organic compounds on Mars. Geology 34, 357360.CrossRefGoogle Scholar
Aubrey, A.D., Chalmers, J.H., Bada, J.L., Grunthaner, F.J., Amashukeli, X., Willis, P., Skelley, A.M., Mathies, R.A., Quinn, R.C., Zent, A. et al. (2008). The Urey instrument: an advanced in situ organic and oxidant detector for Mars exploration. Astrobiol., Spec. In Situ Instrum. Edn, 8, 583597.Google ScholarPubMed
Bada, J.L. & McDonald, G. (1995). Amino acid racemization on Mars; implications for the preservation of biomolecules from an extinct Martian biota. Icarus 114, 139143.CrossRefGoogle ScholarPubMed
Bada, J.L., Wang, X.S. & Hamilton, H. (1999). Preservation of key biomolecules in the fossil record: Current knowledge and future challenges. Philos. Trans. R. Soc. Lond., Ser. B. Biol. Sci. 354, 7787.CrossRefGoogle ScholarPubMed
Benner, A., Devine, K., Mateeva, L. & Powell, D. (2000). The missing organic molecules on Mars. Proc. Nat. Acad. Sci. U.S.A. 97(6):24252430.CrossRefGoogle ScholarPubMed
Berner, R.A. (1971). Principles of Chemical Sedimentation. 240 pp. McGraw-Hill, New York.Google Scholar
Biemann, K. (1979). The implications and limitations of the findings of the Viking organic analysis experiment. J. Mol. Evol. 14, 6570.CrossRefGoogle ScholarPubMed
Bishop, J.L., Saper, L., Beyer, R.A., Lowe, D., Wray, J.J., McKeown, N.K. & Parente, M. (2011). Possible sedimentary features in phyllosilicate-bearing rocks at Mawrth Vallis, Mars. In 42nd Lunar and Planetary Science Conference, Woodlands, Abstract No. 2374.Google Scholar
Bonnacorsi, R. & McKay, C.P. (2008). Total biomass and organics along a N-S moisture gradient of the Atacama region, Chile. In Lunar and Planetary Science Conference, Abstract. 1489.Google Scholar
Borst, A., Peters, S., Foing, B.H., Stoker, C., Wendt, L., Gross, C., Zavaleta, J., Sarrazin, P., Blake, D., Ehrenfreund, P. et al. (2010). Geochemical Results from EuroGeoMars MDRS Utah 2009 Campaign. LPI.41, 2744.Google Scholar
Boyd, E.S., Cummings, D.E. & Geesey, G.G. (2007). Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer. Microbial. Ecol. 54, 170182.CrossRefGoogle Scholar
Boynton, W.V., Ming, D.W., Kounaves, S.P., Young, S.M., Arvidson, R.E., Hecht, M.H., Hoffman, J., Niles, P.B., Hamara, D.K., Quinn, R. et al. (2009). Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325(5936), 6164.CrossRefGoogle ScholarPubMed
Brock, T.D., Smith, D.W. & Madigan, M.T. (1984). Biology of Microorganisms, 4th edn, pp. 1493. Prentice-Hall International Inc., Englewood Cliffs, NJ, USA.Google Scholar
Cairns-Smith, A.G. & Hartman, H. (eds) (1986). Clay Minerals and the Origin of Life, 193 pp. Cambridge University Press, Cambridge.Google Scholar
Carson, J.K., Campbell, L., Rooney, D., Clipson, N. & Gleeson, D.B. (2009). Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol. Ecol. 67, 381388.CrossRefGoogle ScholarPubMed
Carson, J.K., Gonzalez-Quiñones, V., Murphy, D., Hinz, D., Shaw, J.A. & Gleeson, D.B. (2010). Low pore connectivity increases bacterial diversity in soil. Appl. Environ. Microbiol. 76(12), 39363942.CrossRefGoogle ScholarPubMed
Carter, J., Poulet, F., Ody, A., Bibring, J.-P. & Murchie, S. (2011). Global distribution, composition and setting of hydrous minerals on mars: a reappraisal. In 42nd Lunar and Planetary Science Conference, Woodlands, Abstract no. 2593.Google Scholar
Chan, M.A., Beitler, B., Parry, W.T., Ormö, J. & Komatsu, G. (2004). A possible terrestrial analogue for haematite concretions on Mars. Nature 429, 731734.CrossRefGoogle ScholarPubMed
Chevrier, V. & Mathé, P.E. (2007). Mineralogy and evolution of the surface of Mars: a review. Planet. Space Sci. 55, 289314.CrossRefGoogle Scholar
Chyba, C. & Sagan, C. (1992). Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355, 125132.CrossRefGoogle ScholarPubMed
Clarke, J. & Stoker, C. (2011). Concretions in exhumed channels near Hanksville Utah: implications for Mars. Int. J. Astrobiol., in press.CrossRefGoogle Scholar
Connon, S.A., Lester, E.D., Shafaat, H.S., Obenhuber, D.C. & Ponce, A. (2007). Bacterial diversity in hyperarid Atacama Desert soils. J. Geophys. Res. 112, G04S17.CrossRefGoogle Scholar
Court, R.W., Baki, A., Sims, M., Cullen, D. & Sephton, M.A. (2010). Novel solvent systems for in situ extraterrestrial sample analysis. Planet. Space Sci. 58, 14701474.CrossRefGoogle Scholar
Crecchio, C. & Stotzky, G. (1998). Binding of DNA on humic acids: effect on transformation of B. subtilis and resistance to DNase. Soil Biol. Biochem. 30, 10611067.CrossRefGoogle Scholar
Dartnell, L.R., Desorgher, L., Ward, J.M. & Coates, A.J. (2007). Martian sub-surface ionising radiation: biosignatures and geology. Biogeosci. Discuss. 4(1), 455492.Google Scholar
Dartnell, L.R., Storrie-Lombardi, M. & Ward, J.M. (2010). Int. J. Astrobiol. 9(4), 245257.CrossRefGoogle Scholar
Derenne, S., Robert, F., Skrzypczak-Bonduelle, A., Gourier, A., Binet, L. & Rouzaud, J.N. (2008). Molecular evidence for life in the 3.5 billion year old Warrawoona Chert. Earth Planet. Sci. Lett. 272, 476480.CrossRefGoogle Scholar
Direito, S.O.L., Ehrenfreund, P., Marees, A., Staats, M., Foing, B. & Röling, W.F.M., (2011). A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). Int. J. Astrobiol., in press.CrossRefGoogle Scholar
Ehrenfreund, P., Rasmussen, S., Cleaves, J. & Chen, L. (2006). Experimentally tracing the key steps in the origin of life. Astrobiology 6(3), 490520.CrossRefGoogle ScholarPubMed
Ertem, G. & Ferris, J.P. (1998). Formation of RNA oligomers on montmorillonite: site of catalysis. Orig. Life Evol. Biosph. 28, 485499.CrossRefGoogle ScholarPubMed
Flynn, G.J. (1996). The delivery of organic matter from asteroids and comets to the early surface of Mars. Earth Moon Planets 72, 469474.CrossRefGoogle Scholar
Foing, B.H., Stoker, C., Zavaleta, J., Ehrenfreund, P., Thiel, C., Sarrazin, P., Blake, D., Page, J., Pletser, V., Hendrikse, J. et al. (2011). Field astrobiology research in Moon–Mars analogue environment: instruments and methods. Int. J. Astrobiol., in press.Google Scholar
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. (2004). Detection of methane in the atmosphere of Mars. Science 306, 17581761.CrossRefGoogle ScholarPubMed
Glavin, D.P., Schubert, M., Botta, O., Kminek, G. & Bada, J.L. (2001). Detecting pyrolysis products from bacteria on Mars. Earth Planet. Sci. Lett. 185, 15.CrossRefGoogle Scholar
Gómez-Silva, B., Rainey, F.A., Warren-Rhodes, K.A., McKay, C.P. & Navarro-González, R. (2008). Atacama Desert soil microbiology. In Microbiology of Extreme Soils, ed. Dion, P., Nautiyal, C.S. & Varma, A., volume 13, pp. 117132. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Grant, J., Westall, F., Beaty, D., Cady, S., Carr, M., Ciarletti, V., Coradini, A., Elfving, A., Glavin, D., Goesmann, F. et al. (2010). Two rovers to the same site on Mars, 2018: possibilities for cooperative science. Astrobiology 10, 663685.Google Scholar
Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htmGoogle Scholar
He, Z., Wu, L., Li, X., Fields, M.W. & Zhou, J. (2005). Empirical establishment of oligonucleotide probe design criteria. Appl. Environ. Microbiol. 71, 37533760.CrossRefGoogle ScholarPubMed
Hecht, M.H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S., Ming, S.W., Catling, D.C., Clark, B.C., Boynton, W.V., Hoffman, J. et al. (2009). Detection of perchlorate and the soluble chemistry of the Martian soil at the Phoenix lander site. Science 325, 6467.CrossRefGoogle ScholarPubMed
Henneberger, R.M., Walter, M.R. & Anitori, R.P. (2006). Extraction of DNA from acidic, hydrothermally modified volcanic soils. Environ. Chem. 3, 100104.CrossRefGoogle Scholar
Herrera, A. & Cockell, C.S. (2007). Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction. J. Microbiol. Methods 70, 112.CrossRefGoogle Scholar
Hintze, L.H. & Kowallis, B.J. (2009). The Geologic History of Utah. Brigham Young University Geology Studies Special Publication 9, Provo, Utah.Google Scholar
Khanna, M. & Stotzky, G. (1992). Transformation of bacillus subtilis by DNA bound on montmorillonite and effect of DNAse on the transforming ability of bound DNA. Appl. Environ. Microbiol. 58, 19301939.CrossRefGoogle ScholarPubMed
Klingelhofer, K., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B. et al. (2004). Jarosite and hematite at Merdiani lanum from opportunity's Mossbauer spectrometer. Science 306, 1740.CrossRefGoogle Scholar
Knoll, A.H. & Grotzinger, J. (2006). Water on Mars and the prospect of Martian life. Elements 2, 171175.CrossRefGoogle Scholar
Kotler, J.M., Hinman, N.W., Richardson, C.D., Conly, A.G. & Scott, J.R. (2009). Laboratory simulations of prebiotic molecule stability in the jarosite mineral group; end member evaluation of detection and decomposition behavior related to Mars sample return. Planet. Space Sci. 57(12), 13811388.CrossRefGoogle Scholar
Kotler, J.M., Hinman, N.W., Scott, J.R., Yan, B. & Stoner, D.L. (2008). Glycine identification in natural jarosites using laser-desorption Fourier transform mass spectrometry: implications for the search for life on Mars. Astrobiology 8(2), 253266.CrossRefGoogle ScholarPubMed
Kotler, M., Quinn, R., Foing, B.H., Martins, Z. & Ehrenfreund, P. (2011). Analysis of mineral matrices of planetary soils analogs from the Utah desert. Int. J. Astrobiol., in press.CrossRefGoogle Scholar
Liang, M.C., Hartman, H., Kopp, R., Kirschvink, J. & Yung, Y. (2006). Production of hydrogen peroxide in the atmosphere of a snowball earth and the origin of oxygenic photosynthesis. Proc. Nat. Acad. Sci. U.S.A. 103(50): 1889618899.CrossRefGoogle ScholarPubMed
Lester, E.D., Satomi, M. & Ponce, A. (2007). Microflora of extreme arid Atacama Desert soils. Soil Biol. Biochem. 39, 704708.CrossRefGoogle Scholar
Malin, M.C. & Edgett, K.S. (2003). Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 19311934.CrossRefGoogle ScholarPubMed
Marlow, J., Martins, Z. & Sephton, M. (2010). Organic host analogues and the search for life on Mars. Int. J. Astrobiol. 10, 3144.CrossRefGoogle Scholar
Martins, Z., Hofmann, B., Gnos, R., Greenwood, R., Verchovsky, A., Franchi, I., Jull, A., Botta, O., Glavin, D., Dworkin, J. et al. (2007). Amino acid composition, petrology, geochemistry, 14C terrestrial age and oxygen isotopes of the Shisr 033 CR chondrite. Meteorit. Planet. Sci. 42, 15811595.CrossRefGoogle Scholar
Martins, Z., Sephton, M.A., Foing, B.H. & Ehrenfreund, P. (2011). Extraction of amino acids from soils close to the Mars desert research station (MDRS), Utah. Int. J. Astrobiol., in press.CrossRefGoogle Scholar
Milliken, R.E., Bristow, T. & Bish, D.L. (2011). Diagenesis of clay minerals on Mars and implications for the Mars Science Laboratory Rover. In 42nd Lunar and Planetary Science Conference, Woodlands, Abstract no. 2230.Google Scholar
Ming, D.W., Lauer, H.V., Archer, P.D., Sutter, B., Golden, D.C., Morris, R.V., Niles, P.B. & Boynton, W.V. (2009). Combustion of organic molecules by the thermal decomposition of perchlorate salts: Implications for organics at the Mars Phoenix Scout Landing Site. In 40th Lunar and Planetary Science Conference, Woodlands, Abstract no. 2241.Google Scholar
Moore, D.M. & Reynolds, R.C. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. 378 pp. Oxford University Press, NewYork.Google Scholar
Mumma, M.J., Villanueva, G.L., Novak, R.E., Hewagama, T., Bonev, B.P., DiSanti, M.A., Mandell, A.M. & Smith, M.D. et al. (2009). Strong release of methane on Mars in northern summer 2003. Science 323, 10411045.CrossRefGoogle ScholarPubMed
Murchie, S.L., Mustard, J.F., Ehlmann, B.L., Milliken, R.E., Bishop, J.L., McKeown, N.K., Noe Dobrea, E.Z., Seelos, F.P., Buczkowski, D.L., Wiseman, S.M. et al. (2009). A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114, E00D06.CrossRefGoogle Scholar
Nadeau, P.H. & Reynolds, C.R. (1981). Burial and contact metamorphism in the Mancos Shale. Clays Clay Miner. 29, 249259.CrossRefGoogle Scholar
Navarro-González, R., Rainey, F.A., Molina, P., Bagaley, D.R., Hollen, B.J., de la Rosa, J., Small, A.M., Quinn, R.C., Grunthaner, F.J., Cáceres, L. et al. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302, 10181021.CrossRefGoogle ScholarPubMed
Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A.C. & McKay, C.P. (2010). Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. 115(12), E12010.CrossRefGoogle Scholar
Ormö, J., Komatsu, G., Chan, M.A., Beitler, B. & Parry, W.T. (2004). Geological features indicative of processes related to the hematite formation in Meridiani Planum and Aram Chaos, Mars: a comparison with diagenetic hematite deposits in southern Utah, USA. Icarus 171, 295316.CrossRefGoogle Scholar
Orzechowska, G.E., Kidd, R., Foing, B.H., Kanik, I., Stoker, C. & Ehrenfreund, P. (2011). Analysis of Mars analog soil samples using solid phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry. Int. J. Astrobiol., in press.CrossRefGoogle Scholar
Parnell, J., Cullen, D., Sims, M.R., Bowden, S., Cockell, C.S., Court, R., Ehrenfreund, P., Gaubert, F., Grant, W., Parro, V. et al. (2007). Searching for life on Mars: selection of molecular targets for ESA's Aurora Exomars Mission. Astrobiology 7/4, 578604.CrossRefGoogle Scholar
Patel, M.R., Zarnecki, J.C. & Catling, D.C. (2002). Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor. Planet. Space Sci. 50(9), 915927.CrossRefGoogle Scholar
Peeters, Z., Quinn, R., Martins, Z., Sephton, M.A., Becker, L., Brucato, J., Grunthaner, F. & Ehrenfreund, P. (2009). Habitability on planetary surfaces: interdisciplinary preparation phase for future Mars missions. Int. J. Astrobiol. 8(4), 301315.CrossRefGoogle Scholar
Pietramellara, G., Ascher, J., Ceccherini, M., Nannipieri, P. & Wenderoth, D. (2007). Adsorption of pure and dirty bacterial DNA on clay minerals and their transformation frequency. Biol. Fertil. Soils 43(6), 731739.CrossRefGoogle Scholar
Ponnamperuma, C., Shimoyama, A. & Friebele, E. (1982). Clay and the origin of life. Orig. Life 12(1), 940.CrossRefGoogle ScholarPubMed
Poulet, F., Beaty, D.W., Bibring, J.-P., Bish, D., Bishop, J.L., Noe Dobrea, E., Mustard, J.F., Petit, S. & Roach, L.H. (2009). Key scientific Questions and key investigations from the First International Conference on Martian Phyllosilicates. Astrobiology 9, 257267.CrossRefGoogle ScholarPubMed
Quinn, R., Zent, A., Grunthaner, F., Ehrenfreund, R., Taylor, C. & Garry, J. (2005). Detection and characterization of oxidizing acids in the Atacama Desert using the Mars oxidation instrument. Planet. Space Sci. 53, 13761388.CrossRefGoogle Scholar
Richardson, C.D., Hinman, N.W., McJunkin, T.R., Kotler, J.M. & Scott, J.R. (2008). Exploring biosignatures associated with Thenardite by geomatrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (GALDI-FTICR-MS). Geomicrobiol. J. 25, 19.CrossRefGoogle Scholar
Rutherford, P.M. & Juma, N.G. (1992). Influence of texture on habitable pore space and bacterial-protozoan populations in soil. Biol. Fertil. Soils 12, 221227.CrossRefGoogle Scholar
Saeki, K. & Sakai, M. (2009). The influence of soil organic matter on DNA adsorptions on andosols. Microbes Environ. 24(2), 175179.CrossRefGoogle ScholarPubMed
Sephton, M.A. (2002). Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 19, 292311.CrossRefGoogle ScholarPubMed
Sephton, M.A. (2010). Organic geochemistry and the exploration of Mars, J. Cosmol. 5, 11411149.Google Scholar
Soffen, G.A. (1977). The Viking project. J. Geophys. Res. 82(28), 39593970.CrossRefGoogle Scholar
Squyres, S., Grotzinger, J.P., Arvidson, R.E., Bell, J.F., Calvin, W., Christensen, P.R., Clark, B.C., Crisp, J.A., Farrand, W.H., Herkenhoff, K.E. et al. (2004). In-situ evidence for an ancient aquaeus environment at Meridaini Planum. Science 306, 1709.CrossRefGoogle Scholar
Squyres, S.W., Knoll, A.H., Arvidson, R.E., Ashley, J.W., Bell III, J.F., Calvin, W.M., Christensen, P.R., Clark, B.C., Cohen, B.A., de Souza, P.A. Jr. et al. (2009). Exploration of Victoria crater by the Mars rover opportunity. Science 324, 10581061.CrossRefGoogle ScholarPubMed
Stoker, C., Zent, A., Catling, D.C., Douglas, S., Marshall, J.R., Archer, D., Clark, B., Kounaves, S.P., Lemmon, M.T., Quinn, R. et al. (2010). Habitability of the Phoenix landing site. J. Geophys. Res. 115, E00E20.CrossRefGoogle Scholar
Stoker, C., Clarke, J., Direito, S., Martin, K., Zavaleta, J., Blake, D. & Foing, B.H. (2011). Chemical, mineralogical, organic and microbial properties of subsurface soil cores from the Mars Desert Research Station Utah, a phyllosilicate and sulfate rich Mars analog site. Int. J. Astrobiol., in press.CrossRefGoogle Scholar
Tegelaar, E.W., Deleeuw, J.W., Derenne, S. & Largeau, C. (1989). A reappraisal of kerogen formation, Geochem. Geophys. Acta 53, 31033106.CrossRefGoogle Scholar
Ten Kate, I. (2010). Organics on Mars. Astrobiology 10(6), 589.CrossRefGoogle ScholarPubMed
Tielens, A.G.G.M. (2008). Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289337.CrossRefGoogle Scholar
Thiel, C., Ehrenfreund, P., Foing, B.F., Pletser, V. & Ullrich, O. (2011a). PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. Int. J. Astrobiol., in press.CrossRefGoogle Scholar
Thiel, C., Pletser, V. & Foing, B.F. (2011b). Human crew related aspects for Astrobiology research. Int. J. Astrobiol., in press.CrossRefGoogle Scholar
Tosca, N.J. & Hurowitz, J.A. (2011). Neoformation, diagenesis and the clay cycle on early Mars. In 42nd Lunar and Planetary Science Conference, Woodlands, Abstract no. 2031.Google Scholar
Tosca, N.J., Knoll, A.H. & Mc Lennan, S.M. (2008). Water activity and the challenge for life on early Mars. Science 320, 12041207.CrossRefGoogle ScholarPubMed
Tritz, J.P., Herrmann, D., Bisseret, P., Connan, J. & Rohmer, M. (1999). Abiotic and biological hopanoids transformation: towards the formation of molecular fossils of the hopane series. Org. Geochem. 30, 499514.CrossRefGoogle Scholar
Westall, F. (2009). Life on an anaerobic planet. Science 232, 471472.CrossRefGoogle Scholar
Westall, F., Brack, A., Hofmann, B., Horneck, G., Kurat, G., Maxwell, J., Ori, G.G., Pillinger, C., Raulin, F., Thomas, N. et al. (2000). An ESA study for the search for life on Mars. Planet. Space Sci. 48, 181202.CrossRefGoogle Scholar
Yan, B., Stoner, D.L., Kotler, J.M., Hinman, N.W. & Scott, J.R. (2007). Detection of biosignatures by geomatrix-assisted laser desorption/ionization (GALDI) mass spectrometry. Geomicrobiol. J. 24(3–4), 379385.CrossRefGoogle Scholar
Yen, A.S., Kim, S.S., Hecht, M.H., Frant, M.S. & Murray, B. (2000). Evidence that the reactivity of the Martian soil is due to superoxide ions. Science 289, 19091912.CrossRefGoogle ScholarPubMed
Zegers, T. et al. (2011). Summary outcome and recommendations: workshop on landing sites for exploration missions, Leiden/Noordwijk, January 2011 (http://www.planetarygis.org/wiki/Workshop2011/Results).Google Scholar
Zahnle, K., Freedman, R.S. & Catling, D.C. (2011). Is there methane on Mars? Icarus 212, 493503.CrossRefGoogle Scholar
Zhou, J., Bruns, M.N. & Tiedje, J.M. (1996). DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62(2), 316322.CrossRefGoogle ScholarPubMed