Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T17:24:24.727Z Has data issue: false hasContentIssue false

Adsorption of amino acids and nucleic acid bases onto minerals: a few suggestions for prebiotic chemistry experiments

Published online by Cambridge University Press:  18 June 2012

Dimas A.M. Zaia*
Affiliation:
Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina-PR, Brazil

Abstract

Amino acids and nucleic acid bases are very important for the living organisms. Thus, their protection from decomposition, selection, pre-concentration and formation of biopolymers are important issues for understanding the origin of life on the Earth. Minerals could have played all of these roles. This paper discusses several aspects involving the adsorption of amino acids and nucleic acid bases onto minerals under conditions that could have been found on the prebiotic Earth; in particular, we recommend the use of minerals, amino acids, nucleic acid bases and seawater ions in prebiotic chemistry experiments. Several experiments involving amino acids, nucleic acid bases, minerals and seawater ions are also suggested, including: (a) using well-characterized minerals and the standardization of the mineral synthesis methods; (b) using primary chondrite minerals (olivine, pyroxene, etc.) and clays modified with metals (Cu, Fe, Ni, Mo, Zn, etc.); (c) determination of the possible products of decomposition due to interactions of amino acids and nucleic acid bases with minerals; (d) using minerals with more organophilic characteristics; (e) using seawaters with different concentrations of ions (i.e. Na+, Ca2+, Mg2+, SO42− and Cl); (f) using non-protein amino acids (AIB, α-ABA, β-ABA, γ-ABA and β-Ala and g) using nucleic acid bases other than adenine, thymine, uracil and cytosine. These experiments could be useful to clarify the role played by minerals in the origin of life on the Earth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J.D. (1994). Molecular Biology of the Cell, 3rd edn, Garland Publishing Inc., New York.Google Scholar
Basiuk, V.A. (2002). Encyclopedia of Surface and Colloid Science, Marcell Dekker, New York, pp. 277293.Google Scholar
Basiuk, V.A., Navarro-Gonzalez, R. & Basiuk, E.V. (1998). Orig. Life Evol. Biosph. 28, 167193.CrossRefGoogle Scholar
Baú, J.P.T. et al. (2012). Orig. Life Evol. Biosph. 42, 1929.CrossRefGoogle Scholar
Bebié, J. & Schoonen, M.A.A. (2000). Geochem. Trans. 8, doi:10.1039/b005581f.Google Scholar
Benetoli, L.O.B., de Souza, C.M.D., da Silva, K.L., de Souza Junior, I.G., de Santana, H., Paesano Junior, A., da Costa, A.C.S., Zaia, C.T.B.V. & Zaia, D.A.M. (2007). Orig. Life Evol. Biosph. 37, 479493.Google Scholar
Benetoli, L.O.B., de Santana, H., Zaia, C.T.B.V. & Zaia, D.A.M. (2008). Monatsh. Chem. 139, 753761.Google Scholar
Bernal, J.D. (1951). The Physical Basis of Life. Routledge and Kegan Paul, London.Google Scholar
Bouchoucha, M., Jaber, M., Onfroy, T., Lambert, J.F. & Xue, B. (2011). J. Phys. Chem. C 115, 2181321825.Google Scholar
Boulet, P., Greenwell, H.C., Stackhouse, S. & Coveney, P.V. (2006). J. Mol. Struct.: Theochem 762, 3348.Google Scholar
Brack, A. (2007). Chem. Biodivers. 4, 665679.Google Scholar
Brown, E., Colling, A., Park, D., Phillips, J., Rothery, D. & Wright, J. (2004). Seawater: Its Composition, Properties and behavior. The Open University, Oxford.Google Scholar
Carneiro, C.E.A., Berndt, G., de Souza Junior, I.G., de Souza, C.M.D., Paesano Junior, A., da Costa, A.C.S., di Mauro, E., de Santana, H., Zaia, C.T.B. & Zaia, D.A.M. (2011a). Orig. Life Evol. Biosph. 41, 453468.Google Scholar
Carneiro, C.E.A., Santana, H., Casado, C., Coronas, J. & Zaia, D.A.M. (2011b). Astrobiology 11, 409418.CrossRefGoogle Scholar
Cleaves, H.J. II & Lazcano, A. (2001). Chapter 2: The origin of biomolecules. In Chemical Evolution II: from the Origins of Life to Modern Society, ed. Zaikowski, L., Friedrich, J.M. & Russel, S., vol. 1025, pp. 1743. American Chemical Society Series, Washington, USA.Google Scholar
Cleaves, H.J. II, Jonsson, C.M., Jonsson, C.L., Sverjensky, D.A. & Hazen, R.M. (2010). Astrobiology 10, 311323.Google Scholar
Cohn, C.A., Hansson, T.K., Larsson, H.S., Soweby, S.J. & Holm, N.G. (2001). Astrobiology 1, 477480.Google Scholar
De Ronde, C.E.J., Channer, D.M.D., Faure, K., Bray, C.J. & Spooner, E.T.C. (1997). Geochim. Cosmochim. Acta 61, 40254042.Google Scholar
de Santana, H., Paesano Junior, A., da Costa, A.C.S., di Mauro, E., de Souza Junior, I.G., Ivashita, F., de Souza, CM.D., Zaia, C.T.B.V. & Zaia, D.A.M. (2010). Amino Acids 38, 10891099.Google Scholar
Elsila, J.E., Dworkin, J.P., Bernstein, M.P., Martin, M.P. & Sandford, S.A. (2007). Astrophys. J. 660, 911918.Google Scholar
Feng, D.F., Cho, G. & Doolittle, R.F. (1997). Proc. Natl. Acad. Sci. U.S.A. 94, 1302813033.Google Scholar
Ferris, J.P. & Hagan, W.J. Jr. (1984). Tetrahedron 40, 10931120.CrossRefGoogle Scholar
Ferris, J.P., Joshi, P.C., Edelson, E.H. & Lawless, J.G. (1978). J. Mol. Evol. 11, 293311.Google Scholar
Franchi, M., Ferris, J.P. & Gallori, E. (2003). Orig. Life Evol. Biosph. 33, 116.CrossRefGoogle Scholar
Fraser, D.G., Christopher, H.G., Skipper, N.T., Smalley, M.V., Wilkinson, M.A., Demé, B. & Heenanf, R.K. (2011a). Phys. Chem. Chem. Phys. 13, 825830.CrossRefGoogle Scholar
Fraser, D.G., Fitz, D., Jakschitz, T. & Rode, B.M. (2011b). Phys. Chem. Chem. Phys. 13, 831838.Google Scholar
Fu, L., Weckhuysen, B.M., Verberckmoes, A.A. & Schoonheydt, R.A. (1996). Clay Miner. 31, 491–450.Google Scholar
Gil, A., Korili, S.A. & Vicente, M.A. (2008). Catal. Rev.: Sci. Eng. 50, 153221.Google Scholar
Greenwell, H.C. & Coveney, P.V. (2006). Orig. Life Evol. Biosph. 36, 1337.Google Scholar
Hashizume, H. & Theng, B.K.G. (2007). Clays Clay Miner. 55, 599605.Google Scholar
Hashizume, H., Theng, B.K.G. & Yamagishi, A. (2002). Clay Miner. 37, 551557.CrossRefGoogle Scholar
Hashizume, H., van der Gaast, S. & Theng, B.K.G. (2010). Clay Miner. 45, 469475.CrossRefGoogle Scholar
Hatton, B. & Rickard, D. (2008). Orig. Life Evol. Biosph. 38, 257271.Google Scholar
Hazen, R.M., Filley, T.R. & Goodfriend, G.A. (2001). Proc. Natl. Acad. Sci. U.S.A. 98, 54875490.Google Scholar
Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A. & Yang, H. (2008). Am. Miner. 93, 16931728.Google Scholar
Hedges, J.I. (1977). Geochim. Cosmochim. Acta 41, 11191123.Google Scholar
Holm, N.G. & Andersson, E. (2005). Astrobiology 5, 444460.Google Scholar
Holm, N.G., Dowler, M.J., Wadsten, T. & Arrhenius, G. (1983). Geochim. Cosmochim. Acta 47, 14651470.Google Scholar
Hua, L.L., Kobayashi, K., Ochiai, E.I., Gehrke, C.W., Gerhardt, K.O. & Ponnamperuma, C. (1986). Orig. Life Evol. Biosph. 16, 226227.CrossRefGoogle Scholar
IMA-International Mineralogical Association (2012). Retrieved from Internet on January, 18, 2012. Available at Web site http://pubsites.uws.edu.au/ima-cnmnc/imalist.htmGoogle Scholar
Izawa, M.R.M., Nesbit, H.W., MacRae, N.D. & Hoffman, E.L. (2010). Earth Planet. Sci. Lett. 298, 443449.Google Scholar
Klapper, M.H. (1977). Biochem. Biophys. Res. Comm. 78, 10181024.Google Scholar
Knauth, L.P. (1998). Nature 395, 544555.Google Scholar
Krohn, J.E. & Tsapatsis, M. (2005). Langmuir 21, 87438750.Google Scholar
Krohn, J.E. & Tsapatsis, M. (2006). Langmuir 22, 93509356.Google Scholar
Lahav, N. (1994). Hetereg. Chem. Rev. 1, 159179.Google Scholar
Lahav, N. & Chang, S. (1976). J. Mol. Evol. 8, 357380.Google Scholar
Lailach, G.E. & Brindley, G.W. (1969). Clays Clay Miner. 17, 95100.CrossRefGoogle Scholar
Lailach, G.E., Tompson, T.D. & Brindley, G.W. (1968). Clays Clay Miner. 16, 295301.Google Scholar
Lambert, J.F. (2008). Orig. Life Evol. Biosph. 38, 211242.CrossRefGoogle Scholar
Lambert, J.F., Stievano, L., Lopes, I., Gharsallah, M. & Piao, L. (2009). Planet. Space Sci. 57, 460467.Google Scholar
LaRowe, D.E. & Regnier, P. (2008). Orig. Life Evol. Biosph. 38, 383397.Google Scholar
Levy, M., Miller, S.L., Brinton, K. & Bada, J.L. (2000). Icarus 145, 609613.Google Scholar
Llorca, J. (2005). Int. Microbiol. 8, 512.Google Scholar
Martins, Z., Botta, O., Fogel, M.L., Sephton, M.A., Glavin, D.P., Watson, J.S., Dworkin, J.P., Schwartz, A.L. & Ehrenfreund, P. (2008). Earth Planet. Lett. 270, 130136.Google Scholar
Mesu, J.G., Visser, T., Beale, A.M., Soulimani, F. & Weckhuysen, B.M. (2006). Chem. Eur. J. 12, 71677177.Google Scholar
Munsch, S., Hartmann, M. & Ernst, S. (2001). Chem. Commun. 2001, 19781979.Google Scholar
Negrón-Mendoza, A., Ramos-Bernal, S. & de Buen, I.G. (2010). IEEE-Trans. Nucl. Sci. 57, 12231227.Google Scholar
Norén, K., Loring, J.S. & Persson, P. (2008). J. Coll. Interf. Sci. 319, 416428.Google Scholar
Parbhakar, A., Cuadros, J., Sephton, M.A., Dubbin, W., Coles, B.J. & Weiss, D. (2007). Colloids Surf. A: Physicochem. Eng. Aspects 307, 142149.Google Scholar
Plankensteiner, K., Reiner, H. & Rode, B.M. (2005). Curr. Org. Chem. 9, 11071114.CrossRefGoogle Scholar
Plankensteiner, K., Reiner, H. & Rode, B.M. (2006). Mol. Divers 10, 37.Google Scholar
Plekan, O., Feyer, V., Sutara, F., Skála, T., Švec, M., Cháb, V., Matolín, V. & Prince, K.C. (2007). Surf. Sci. 601, 19731980.Google Scholar
Pucci, A., Branciamore, S., Casarosa, M., D'Acqui, L.P.D. & Gallori, E. (2010). J. Cosmol. 10, 33983407.Google Scholar
Rishpon, J., O'Hara, P.J., Lahav, N. & Lawless, J.G. (1982). J. Mol. Evol. 18, 179184.Google Scholar
Saladino, R., Crestini, C., Costanzo, G., Negri, R. & Di Mauro, E. (2001). Bioorg. Med. Chem. 9, 12491253.CrossRefGoogle Scholar
Schoonen, M., Smirnov, A. & Cohn, C. (2004). Ambio 33, 539551.Google Scholar
Schopf, J.W. (1993). Science 260, 640646.CrossRefGoogle Scholar
Sciascia, L., Liveri, M.L.T. & Merli, M. (2011). Appl. Clay Sci. 53, 657668.Google Scholar
Sephton, M.A. & Botta, O. (2008). Space Sci. Rev. 135, 2535.Google Scholar
Sowerby, S.J., Edelwirth, M., Reiter, M. & Heckl, W.M. (1998). Langmuir 14, 51955202.CrossRefGoogle Scholar
Sowerby, S.J., Cohn, C.A., Heckl, W.M. & Holm, N.G. (2001a). Proc. Natl. Acad. Sci. U.S.A. 98, 820822.Google Scholar
Sowerby, S.J., Mörth, C.M. & Holm, N.G. (2001b). Astrobiology 1, 481487.Google Scholar
Stievano, L., Piao, L.Y., Lopes, I., Meng, M., Costa, D. & Lambert, J.F. (2007). Eur. J. Miner. 19, 321331.Google Scholar
StrašáK, M. (1991). Naturwissenschaften 78, 121122.CrossRefGoogle Scholar
Suter, J.L., Anderson, R.L., Greenwellb, H.C. & Coveney, P.V. (2009). J. Mater. Chem. 19, 24822493.Google Scholar
Swadling, J.B., Coveney, P.V. & Greenwell, H.C. (2010). J. Am. Chem. Soc. 132, 1375013764.Google Scholar
Titus, E., Kalkar, A.K. & Gaikar, V.G. (2003). Coll. Surf. A: Physicochem. Eng. Asp. 223, 5661.Google Scholar
Vaccari, A. (1999) Applied Clay Sci. 14, 161198.CrossRefGoogle Scholar
Vieira, A.P., Berndt, G., de Souza Junior, I.G., di Mauro, E., Paesano Junior, A.de Santana, H., da Costa, A.C.S., Zaia, C.T.B.V. & Zaia, D.A.M. (2011). Amino Acids 40, 205214.Google Scholar
Weckhuysen, B.M., Verberckmoes, A.A., Vannijvel, I.P., Pelgrims, J.A., Buskens, P.L., Jacobs, P.A. & Schoonheydt, R.A. (1995). Angew. Chem. 107, 28682870.Google Scholar
Weckhuysen, B.M., Leeman, H. & Schoonheydt, R.A. (1999). Phys. Chem. Chem. Phys. 1, 28752880.Google Scholar
Winter, D. & Zubay, G. (1995). Orig. Life Evol. Biosph. 25, 6181.Google Scholar
Yeo, T.H.C., Tan, I.A.W. & Abdullah, M.O. (2012). Renew. Sustain. Energy Rev. 16, 33553363.Google Scholar
Zaia, D.A.M. (2004). Amino Acids 27, 113118.CrossRefGoogle ScholarPubMed
Zaia, D.A.M., Vieira, H.J. & Zaia, C.T.B.V. (2002). J. Braz. Chem. Soc. 13, 579581.Google Scholar
Zaia, D.A.M., Zaia, C.T.B.V. & de Santana, H. (2008). Orig. Life Evol. Biosph. 38, 469488.Google Scholar
Zhou, C.H. (2011). Appl. Clay Sci. 53, 8796.Google Scholar