Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T08:21:52.235Z Has data issue: false hasContentIssue false

X-ray Images of PKS1209-52 and its Central Compact X-ray Source

Published online by Cambridge University Press:  12 April 2016

Yutaka Matsui
Affiliation:
Dept. of Physics & Astronomy, Northwestern Univ., Evanston, IL 60201, USA., Evanston, IL 60201
Knox S. Long
Affiliation:
Center for Astrophysical Sciences, Johns Hopkins Univ., Baltimore, MD 21218, USA
Ian R. Tuohy
Affiliation:
Mount Stromlo and Siding Spring Observatories, Australian National Univ., ACT 2606, Canberra, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A complete X-ray image of the SNR PKS1209-52 (= G296.5+10.0) was obtained with the IPC and HRI on the Einstein Observatory. The remnant has a shell-like X-ray morphology much like its appearance at radio wavelengths, while a compact X-ray source is clearly detected near the center of the remnant. The flux observed from the X-ray nebula F(0.1−4.5 keV) is 8 × 10−11 ergs cm−2 s−1, which corresponds to a luminosity L(0.1−4.5 keV) = 8 × 1035 ergs s−1 for a distance of 2 kpc. Applying a simple shell model to the X-ray emission distribution, we derived an ambient interstellar medium nO = 0.08 H atoms cm−3, total X-ray emitting plasma mass 150 M, and thermal energy 1.2 × 1050 ergs. The flux from the compact X-ray source F(0.15−4.5 keV) is ~2 × 10−12 ergs cm−2 s−1. There are no obvious optical counterparts brighter than mv ~ 22 within the 3.3″ radius HRI error circle. If the object is a hot neutron star, the HRI/IPC count rate ratio implies a surface temperature of 1.6 × 106 K for NH = 3.2 × 1021 cm−2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Berkhuijsen, E.M. 1986, Astr. Astrophys., 166, 257.Google Scholar
Caswell, J.L. and Lerche, I. 1979, M.N.R.A.S., 187, 201.Google Scholar
Giacconi, R. et al. 1979, Ap. J., 230, 540.Google Scholar
Helfand, D.J. and Becker, R.H. 1984, Nature, 307, 215.Google Scholar
Helfand, D.J., Chanan, G.A., and Novick, R. 1980, Nature, 283, 337.Google Scholar
Kellett, B.J. et al. 1987, M.N.R.A.S., 225, 199.Google Scholar
Leahy, D.A., Venkatesan, D., Long, K.S., and Naranan, S. 1985, Ap. J., 294, 183.CrossRefGoogle Scholar
Manchester, R.N., D’Amico, N., and Tuohy, I.R. 1985, M.N.R.A.S., 212, 975.Google Scholar
Matsui, Y., Long, K.S., Dickel, J.R., and Greisen, E.R. 1984, Ap. J., 287, 295.Google Scholar
Mills, B.Y. 1983, Supernova Remnants and their X-ray Emission, ed. Danziger, J. and Gorenstein, P. (Dordrecht: Reidel), p. 551.CrossRefGoogle Scholar
Milne, D.K. 1979, Aust. J. Phys., 32, 83.Google Scholar
Milne, D.K. and Dickel, J.R. 1975, Aust. J. Phys., 28, 209 CrossRefGoogle Scholar
Nomoto, K. and Tsuruta, S. 1986, Ap. J. (Letters), 305, 19.Google Scholar
Pandharipande, V.R., Pines, D., and Smith, R.A. 1976, Ap. J., 208, 550 Google Scholar
Raymond, J.C., and Smith, B.W. 1977, Ap. J. Suppl., 35, 419 Google Scholar
Roger, R.S. 1986, Private Communication.Google Scholar
Tuohy, I.R., Garmire, G.P., Manchester, R.N., and Dopita, M.A. 1983, Ap. J., 268, 778 CrossRefGoogle Scholar
Tuohy, I.R. et al. 1979, Ap. J. (Letters), 230, 27.Google Scholar
Vaiana, G.S. et al. 1981, Ap. J., 245, 163.CrossRefGoogle Scholar