Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-10-04T00:50:53.565Z Has data issue: false hasContentIssue false

A Unified View of How the Study of Emission Lines Furthers Our Knowledge of AGN

Published online by Cambridge University Press:  12 April 2016

Julian H. Krolik*
Affiliation:
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A global view is given of how emission lines have been, and may in the future, be used to enhance our understanding of AGN. Lines from the microwave to the X-ray bands all contribute. Although we have a deep understanding of the physical processes by which line photons are generated, when the circumstances of line emission are complicated, models become too unreliable to provide strong inferences about the rest of the AGN system. At present, the lines which appear the most promising for helping answer the most important questions about AGN are the 22 GHz H2O rotational transition and the 6.4keV FeKα fluorescence.

Type
X. Unification of Active Galaxies and Other Global Issues
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Antonucci, R.R.J. 1993, ARA&A, 31, 473.Google Scholar
Antonucci, R.R.J., & Miller, J.S. 1985, ApJ, 297, 621.CrossRefGoogle Scholar
Balsara, D.S., & Krolik, J.H. 1993, ApJ, 402, 109.Google Scholar
Band, D.L., Klein, R.L., Castor, J.I., & Nash, J.K. 1990, ApJ, 362, 90.CrossRefGoogle Scholar
Bottorff, M., et al. 1997, this volume.Google Scholar
Braatz, J.A., Wilson, A.S., & Menkel, C. 1994, ApJ, 437, L99.Google Scholar
Cecil, G., Bland, J., & Tully, R.B. 1990, ApJ, 355, 70.CrossRefGoogle Scholar
Chiang, J., & Murray, N. 1996, ApJ, 466, 704.Google Scholar
Clavel, J., et al. 1991, ApJ, 366, 64.Google Scholar
Done, C., & Krolik, J.H. 1996, ApJ, 463, 144.CrossRefGoogle Scholar
Emmering, R.T., Blandford, R.D., & Shlosman, I. 1992, ApJ, 385, 460.Google Scholar
Ghisellini, G., Haardt, F., & Matt, G. 1994, MNRAS, 267, 743.Google Scholar
Greenhill, L. 1997, this volume.Google Scholar
Korista, K.T., et al. 1995, ApJS, 97, 285.Google Scholar
Krolik, J.H., & Begelman, M.C. 1986, ApJ, 308, L55.Google Scholar
Krolik, J.H., Horne, K., Kallman, T.R., Malkan, M.A., Edelson, R.A., & Kriss, G.A. 1991, ApJ, 371, 541.Google Scholar
Krolik, J.H., & Kriss, G.A. 1995, ApJ, 447, 512.Google Scholar
Krolik, J.H., Madau, P., & Życki, P. 1994, ApJ, 420, L57.Google Scholar
Laor, A. 1991, ApJ, 376, 90.Google Scholar
Maoz, D. 1997, this volume.Google Scholar
Matt, G., Perola, G.C., & Stella, L. 1993, A&A, 267, 643.Google Scholar
Matt, G., Fabian, A.C., & Ross, R.R. 1996, MNRAS, 278, 1111.Google Scholar
Miller, J.S., Goodrich, R.W., & Mathews, W.G. 1991, ApJ, 378, 47.CrossRefGoogle Scholar
Miyoshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakai, N., Diamond, P., & Inoue, M. 1995, Nature, 373, 127.Google Scholar
Nandra, K. 1997, this volume.Google Scholar
Netzer, H. 1997, this volume.Google Scholar
Pier, E.A., & Krolik, J.H. 1992, ApJ, 399, L23.Google Scholar
Pier, E.A., Antonucci, R.R.J., Hurt, T., Kriss, G.A., & Krolik, J.H. 1994, ApJ, 428, 124.Google Scholar
Rees, M.J. 1987, MNRAS, 228, 47p.Google Scholar
Shakura, N.I., & Sunyaev, R.A. 1973, A&A, 24, 337.Google Scholar
Shakura, N.I., & Sunyaev, R.A. 1976, MNRAS, 175, 613.CrossRefGoogle Scholar
Wanders, I., Goad, M.R., Korista, K.T., Peterson, B.M., Horne, K., Ferland, G.J., Koratkar, A.P., Pogge, R.W., & Shields, J.C. 1995, ApJ, 453, L87.Google Scholar
Wanders, I., & Peterson, B.M. 1996, ApJ, 466, 174.Google Scholar
Weaver, K., Nousek, J., Yaqoob, T., Mushotzky, R.F., Makino, F., & Otani, C. 1996, ApJ, 458, 160.Google Scholar
Wilson, A.S. 1994, in Proceedings of the Oxford Torus Workshop, ed. Ward, M.J. (Oxford University: Oxford UK), p. 5.Google Scholar
Życki, P., Krolik, J.H., Zdziarski, A.A., & Kallman, T.R. 1994, ApJ, 437, 597.Google Scholar