Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T11:39:21.799Z Has data issue: false hasContentIssue false

Understanding the Nebular Spectrum of SN 1987A

Published online by Cambridge University Press:  12 April 2016

Richard McCray*
Affiliation:
JILA, University of Colorado, Boulder, CO 80309-0440, USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nebular spectra of supernovae differ from those of better-known emission nebulae in that many of the emission lines are optically thick. Here we sketch the theory for interpreting such spectra, and show how it can be used to interpret prominent emission line systems in the spectrum of SN 1987A. As examples, we describe: (1) a simple method to infer the density of OI from observations of the evolution of the doublet ratio in [O I]λλ6300; (2) new kind of hydrogen recombination hne spectrum; (3) an analysis showing that the Call infrared emission lines must come from primordial, not newly-synthesized, calcium; (4) a theory for the Fe/Co/Ni emission lines that shows that the inner envelope of SN 1987A must have a foamy texture, in which low density radioactive bubbles of Fe/Co/Ni reside in a massive substrate of hydrogen, helium, and other elements.

Type
SN 1987A, SN 1993J, and Other Supernovae
Copyright
Copyright © Cambridge University Press 1996

References

Chugai, N. N. 1987, Soviet Astron. Lett., 13, 282.Google Scholar
Chugai, N. N. 1988, Astron. Tsirk., 1533, 7.Google Scholar
Chugai, N. N. 1990, Soviet Astron. 34, 96.Google Scholar
Colgan, S. W. J., & Hollenbach, D. J. 1988, ApJL, 329, L25.Google Scholar
Fransson, C., & Chevalier, R. A. 1987. ApJL, 322, L15.Google Scholar
Fransson, C., Houck, J. & Kozma, C. 1995, these proceedings.Google Scholar
Haas, M. R., Colgan, S. W. J., Erikson, E. F., Lord, S. D., Burton, M. G., & Hollenbach, D. J. 1990, ApJ, 360, 257.Google Scholar
Kirshner, R., & Kwan, J., 1975, ApJ, 197, 415.Google Scholar
Li, H.-W., & McCray, R. 1992, ApJ, 387, 309.Google Scholar
Li, H.-W., & McCiay, R. 1993, ApJ, 405, 730.Google Scholar
Li, H.-W., McCray, R., & Sunyeav, R. A. 1993, ApJ, 419, 824.Google Scholar
Luo, D., McCray, R., & Slavin, J. 1994, ApJ, 430, 264.Google Scholar
Masai, K., & Nomoto, K. 1994, ApJ, 424, 924.Google Scholar
McCray, R. 1993, Ann. Rev. Astr. & Ap., 31, 175.Google Scholar
Moseley, S. H., Dwek, E., Glaccum, W., Graham, J. R., Loewenstein, R. F., & Silverberg, R. F. 1989, ApJ, 347, 119.Google Scholar
Nomoto, K., Shigeyama, T., Kumagai, S., & Yamaoka, H. 1991, in Supernovae, ed. Woosley, S.E. (New York: Springer-Verlag), p. 176.Google Scholar
Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley, CA: University Science Books).CrossRefGoogle Scholar
Phillips, M. M., & Williams, R. 1991, in Supernovae, ed. Woosley, S. E. (New York: Springer-Verlag), p. 36.Google Scholar
Spyromilio, J., & Pinto, P. A. 1991, in SN1987A and Other Supernovae, ed. Danziger, I. J. Kjär, K.. ESO/EIPC Workshop on Supernovae. Munich: ESO (1991), p. 423.Google Scholar
Suzuki, T., Shigeyama, T., and Nomoto, K. 1993, A&A, 275, 883.Google Scholar
Swartz, D. A., Harkness, R. P., & Wheeler, J. C. 1987, Nature 337, 439 Google Scholar
Varani, G.-F., Meikle, W. P. S., Spyromilio, J., & Allen, D. A. 1990, MNRAS, 245, 570.Google Scholar
Wheeler, J. C. & Filippenko, A. V. 1995, these proceedings.Google Scholar
Wooden, D. H., et al 1993, ApJS, 88, 477.Google Scholar
Woosley, S. E. 1988, ApJ, 330, 218.Google Scholar
Woosley, S. E. 1991, in Supernovae, ed. Woosley, S. E. (New York: Springer-Verlag), p. 202.Google Scholar
Xu, Y., McCray, R., Oliva, E., & Randich, S. 1992, ApJ, 386, 181.Google Scholar