Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T10:44:39.096Z Has data issue: false hasContentIssue false

Turbulence in Interstellar Clouds

Published online by Cambridge University Press:  12 April 2016

E. Falgarone*
Affiliation:
California Institute of Technology, 405-47, Pasadena, CA91125, USA Radioastronomie, Ecole Normale Supérieure, 24 rue Lhomond, 75235 Paris Cedex 05, France

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Above masses of the order of lOO M, molecular clouds have masses and sizes which scale like those of self-gravitating polytropes bounded by an external pervading pressure. It is unlikely that this scaling is due to mere observational bias. But the physics underlying this behaviour is far from being understood. In particular, the possible contribution of turbulence to both the ambient pressure and the internal pressure (whose dependence with the density would mimic a polytropic behavior) is a difficult and much debated issue. The clouds mass, size and internal velocity dispersion are such that they are observed to be in approximate virial balance between their self-gravity, the surface energy term due to the ambient pressure and their internal energy. The latter is dominated by the kinetic energy of disordered internal motions. However, there has been little evidence so far that these motions are actually turbulent rather than simply disordered. The transition to turbulence in a flow occurs when the non linear advection term in the momentum equation, v.Δv, considerably exceeds the viscous dissipation term, vΔv (where v is the kinematic viscosity). Non linearities therefore dominate the physics of a turbulent flow and the velocities are not randomly distributed. Most of the previous attempts to determine a well-defined correlation length in the velocity field (Kleiner and Dickman 1985, a and b; Scalo 1984), which is predicted to be close to the scale at which the energy is injected, or to characterize the expected hierarchical structure (Pérault et al. 1986) have been plagued by the lack of dynamical range in the data set and the range of scales over which the correlation functions have been computed. The most plausible determination, that of Kleiner and Dickman (1987) who claim to have found a correlation length of 0.2 pc in the Taurus cloud, gives a result which is so close to the angular resolution of the observations that it is doubtful.

Type
I. Molecular Clouds, Star Formation And HII Regions
Copyright
Copyright © Springer-Verlag 1989

References

Anantharamaiah, K. R., Radhakrishnan, V., Shaver, P. 1984, Astr. Ap., 138, 131.Google Scholar
Anselmet, F., Gagne, Y., Hopfinger, E. J. 1984, J. Fluid Mech., 140, 63.Google Scholar
Bally, J., Langer, W.D., Stark, A.A., Wilson, R.W. 1987, Ap. J. Letters, 312, L43.Google Scholar
Bazell, P. and Désert, F. X. 1988, Ap. J., 333, 353.Google Scholar
Blitz, L., Stark, A.A. 1986, Ap. J.(Letters), 300, L89.Google Scholar
Bloemen, J.B.G.M. et al 1986, Astron. Astrophys., 139, 37.Google Scholar
Boland, P. and de Jong, P. 1982, Ap. J., 261, 110.Google Scholar
Bonazzola, et al. 1987, Astron. Astrophys., 172, 293.Google Scholar
Bonazzola, et al. 1989, submitted to Physics of Fluids.Google Scholar
Chandrasekhar, P. 1951, Proc. Roy. Soc. A., 210, 18 and 26.Google Scholar
Chandrasekhar, P. and Münch, P. 1951, Ap. J., 115, 103.Google Scholar
Chièze, J. P. 1987, Astr. Ap., 171, 225.Google Scholar
Chièze, J. P. and Pineau des Forets, P. 1989, Astr. Ap., in press.Google Scholar
Dame, T.M., Elmegreen, B.G., Cohen, R., Thaddeus, P. 1986, Ap. J, 305, 892.Google Scholar
Dickey, J. M., Hansen, M. M., and Helou, G., preprint.Google Scholar
Dickman, P. 1985, “Protostars and Planets II”, eds. Black, D. C. and Matthews, M. S., Univ. of Arizona Press.Google Scholar
Dutton, J. A. and Deaven, D. G. 1969, Radio Science, 4, 1341.Google Scholar
Falgarone, E., Pérault, M.: 1988, Astron. Astrophys., 205, L1.Google Scholar
Falgarone, E., Puget, J.L.: 1986, Astron. Astrophys., 162, 235.Google Scholar
Falgarone, E., Puget, J.L.: 1988, Galactic and Extragalactic Star Formation, eds. Pudritz, R.E. and Fich, M..Google Scholar
Falgarone, E., Pérault, M.: 1987, Physical Processes in Interstellar Clouds, eds. Morfill, G.E. and Scholer, M..Google Scholar
Falgarone, E., Phillips, T. G. 1989: Submillimetre and Submillimetre Astronomy, ed. Webster, A., in pressGoogle Scholar
Falgarone, E., Phillips, T. G., Walker, C. 1989, in preparation.Google Scholar
Frisch, U., Sulem, P. L., Nelkin, P. 1978, J. Fluid Mech., 87, 719.Google Scholar
Kleiner, S. C. and Dickman, R. L. 1985, Ap. J., 295, 466 and 479.Google Scholar
Kleiner, S. C. and Dickman, R. L. 1987, Ap. J., 312, 837.Google Scholar
Knapp, G. R. and Bowers, P. F. 1988, Ap. J., 332, 299.Google Scholar
Kolmogorov, A.N. 1941: Dokl. Akad. Nauk. 26, 115.Google Scholar
Kolmogorov, A. N. 1962, J. Fluid Mech., 13, 82.Google Scholar
Kulkami, S. R. and Fich, P. 1985, Ap. J., 289, 792.Google Scholar
Landau, L. D. and Lifchitz, E. M. 1959, Fluid Mechanics, Addison-Wesley.Google Scholar
Larson, R.B.: 1981, Monthly Notices Roy. Astron. Soc., 194, 809.Google Scholar
Léorat, J., Passot, T., Pouquet, A.: 1989, Astron. Astrophys., submitted.Google Scholar
Leung, C. M., Kutner, M. L., and Mead, K. N. 1982, Ap. J., 262, 583.Google Scholar
Lewis, B. M. 1987, Ap. J. Suppl, 63, 515.Google Scholar
Lockman, F. J. 1984, Ap. J., 283, 90.Google Scholar
Lovejoy, P. 1982, Science, 216, 185.Google Scholar
Lundgren, T. S. 1982, Phys. Fluids, 25, 2193.Google Scholar
Magnani, L., Blitz, L., Wendel, A. 1988, Ap. J.(Letters), 331, L127.Google Scholar
Maloney, P. 1988, Ap. J., 334, 761.Google Scholar
Mandelbrot, B. B. 1982, “The fractal geometry of nature”, Freeman.Google Scholar
Meneveau, 1989, PhD. dissertation, Yale University.Google Scholar
Meneguzzi, M., Frisch, U., Pouquet, P. 1981, Phys. Rev. Letters, 47, 1060.Google Scholar
Moffat, H.K.: 1981, J. Fluid Mech., 106, 27.Google Scholar
Munch, P. 1957, Ap. J., 125, 42.Google Scholar
Myers, P.C. 1983: Ap. J., 270, 105.Google Scholar
Myers, P.C., Goodman, A.A. 1988a, Ap. J. Letters, 326, L27.Google Scholar
Myers, P.C., Goodman, A.A. 1988b, Ap. J., 329, 392.Google Scholar
Pannekoek, P. and Koelbloed, P. 1949, Pub. Astr. Inst. Amsterdam, 9.Google Scholar
Passot, T.: 1987, Thèse d’Etat Université Paris VII.Google Scholar
Passot, T., Pouquet, P. and Woodward, P. 1988, Astron. Astrophys., 197, 228.Google Scholar
Pérault, M., Falgarone, E., Puget, J.L. 1985, Astron. Astrophys., 152, 371.Google Scholar
Pérault, M., Falgarone, E., Puget, J.L. 1986, Astr. Astrophys., 157, 139.Google Scholar
Pérault, P. and Falgarone, E.: 1988, Molecular Clouds in the Milky Way and External Galaxies, eds. Young, J. and Snell, R..Google Scholar
Puget, J.-L. and Falgarone, P. 1989: Submillimetre and Submillimetre Astronomy, ed. Webster, A., in pressGoogle Scholar
Sasao, P. 1973, Publ. Astron. Soc. Japan, 25, 1.Google Scholar
Scalo, J. M. 1984, Ap. J., 277, 556.Google Scholar
Scalo, J.M., Pumphrey, W.A.: 1982, Ap. J.(Letters), 258, L29.Google Scholar
Scalo, J.: 1987, Interstellar Processes, eds. Hollenbach, D.J. and Thronson, H.A..Google Scholar
Scoville, P. and Young, P. 1983, Ap. J., 265, 148.CrossRefGoogle Scholar
Solomon, P.M., Rivolo, A.R., Barrett, J., Yahil, P. 1987: Ap. J., 319, 730.Google Scholar
Sreenivasan, K. R. and Meneveau, P. 1986, J. Fluid Mech., 173, 357.Google Scholar
Shaver, P. A., Radhakrishnan, V., Anantharamaiah, K.R., Retallack, D.S., Wamsteker, W., Danks, A.C. : Astr. Astrophys., 106,105.Google Scholar
Shu, F., Adams, F.C., Lizano, S.: 1987, Annual Review of Astron. and Astrophys., 25, 23.Google Scholar
Swade, D. A. 1989, Ap. J. Suppl, in press.Google Scholar
Ungerechts, P. and Thaddeus, P. 1987, Ap. J. Suppl, 63, 645.Google Scholar
van Atta, C. W. and Park, P. 1971, “Statistical Models and Turbulence”, eds. Rosenblatt, M. and Atta, C. van: Springer.Google Scholar
van der Hulst, H. C. 1958, Rev. Mod. Phys., 10, 913.Google Scholar
van Dishoeck, E. F. and Black, J. H. 1986, Ap. J. Suppl., 62, 109.Google Scholar