Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T20:17:24.994Z Has data issue: false hasContentIssue false

Three-Dimensional Simulations of Accretion Disks

Published online by Cambridge University Press:  12 April 2016

John F. Hawley
Affiliation:
Virginia Institute for Theoretical Astronomy, University of Virginia, Charlottesville, VA 22903
Steven A. Balbus
Affiliation:
Virginia Institute for Theoretical Astronomy, University of Virginia, Charlottesville, VA 22903

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The transport of angular momentum is the central issue in accretion disk dynamics. We review recent three-dimensional simulations that investigate possible transport mechanisms. Purely hydrodynamic local instabilities and turbulence are ruled out; global spiral waves remain a possibility. MHD turbulence, arising from a local MHD instability, has been shown effective in transporting angular momentum at dynamically important rates. These results establish the basic picture of accretion disk transport.

Type
Part 5. Magnetic Fields and Viscosity
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Balbus, S.A., Gammie, C.F., & Hawley, J.F. 1994, MNRAS, 271, 197 Google Scholar
Balbus, S.A., & Hawley, J.F. 1991, ApJ, 376, 214 CrossRefGoogle Scholar
Balbus, S.A., Hawley, J.F., & Stone, J.M. 1996, ApJ, 467, 76 Google Scholar
Blaes, O.M. 1987, MNRAS, 227, 975 CrossRefGoogle Scholar
Brandenburg, A., Nordlund, Å, Stein, R.F., & Torkelsson, U. 1995, ApJ, 446, 741 Google Scholar
Cabot, W. 1996, ApJ, 465, 874 Google Scholar
Goodman, J. 1993, ApJ, 406, 596 CrossRefGoogle Scholar
Hawley, J.F. 1991, ApJ, 381, 496 CrossRefGoogle Scholar
Hawley, J.F., Gammie, C.F., & Balbus, S.A. 1995, ApJ, 440, 742 CrossRefGoogle Scholar
Hawley, J.F., Gammie, C.F., & Balbus, S.A. 1996, ApJ, 464, 690 Google Scholar
Horne, K. A&A, 297, 273 Google Scholar
Lynden-Bell, D., & Pringle, J.E. 1974, MNRAS, 168, 603 CrossRefGoogle Scholar
Matsumoto, R., & Tajima, T. 1995, ApJ, 455, 767 Google Scholar
Meneguzzi, M., Frisch, U., & Pouquet, A. 1981, Phys.Rev.Lett, 47, 1060 Google Scholar
Papaloizou, J.C.B., & Pringle, J.M. 1984, MNRAS, 208, 721 CrossRefGoogle Scholar
Porter, D.H., Woodward, P.R., Yang, W., & Mei, Q. 1990, Ann. NY Acad. Sci., 617, 234 Google Scholar
Prinn, R.G. 1990, ApJ, 348, 725 Google Scholar
Różyczka, M., & Spruit, H.C. 1993, ApJ, 417, 677 CrossRefGoogle Scholar
Ryu, D., & Goodman, J. 1992, ApJ, 388, 438 Google Scholar
Ryu, D., & Goodman, J. 1994, ApJ, 422, 269 Google Scholar
Ryu, D., Goodman, J., & Vishniac, E. 1996, ApJ, 461, 805 Google Scholar
Sawada, K., & Matsuda, T. 1992, MNRAS, 25, 17 CrossRefGoogle Scholar
Shakura, N.I., Sunyaev, R.A. 1973, A&A, 24, 337 Google Scholar
Shibata, K., & Uchida, Y. 1986, PASJ, 38, 631 Google Scholar
Stone, J.M., & Balbus, S.A. 1996, ApJ, 464, 364 Google Scholar
Stone, J.M., Hawley, J.F., Gammie, C.F. & Balbus, S.A. 1996, ApJ, 463, 656 Google Scholar
Stone, J.M., & Norman, M.L. 1994, ApJ, 433, 756 CrossRefGoogle Scholar
Uchida, Y., & Shibata, K. 1985, PASJ, 37, 515 Google Scholar