Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T07:57:50.056Z Has data issue: false hasContentIssue false

Theoretical Modelling of Algol Disks

Published online by Cambridge University Press:  12 April 2016

I. Hubeny*
Affiliation:
Joint Institute for Laboratory Astrophysics,University of Coloradoand National Bureau of Standards Boulder, CO 80309-0440U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A brief review of various theoretical approaches to model accretion disks is presented. Emphasis is given to models that determine self-consistently the structure of a disk together with the radiation field. It is argued that a proper treatment of the vertical structure is essential for calculating theoretical spectra to be compared with observations. In particular, it is shown that hot layers above an accretion disk (sometimes called disk “chromospheres” or “coronae”), whose presence is indicated by recent UV observations of strong emission lines of highly ionized species, may be explained using simple energy balance arguments.

Type
Research Article
Copyright
Copyright © Kluwer 1989

References

Adam, J., Störzer, H., Shaviv, G., and Wehrse, R.: 1988, Astron. Astrophys. 193, L1 Google Scholar
Athay, R. G.: 1976, The Solar Chromosphere and Corona: Quiet Sun (Dordrecht: Reidel).Google Scholar
Auer, L.H., and Mihalas, D.: 1969, Astrophys. J. 158, 641.Google Scholar
Böhm-Vitense, E.: 1987, Astrophys. J. 317, 750.Google Scholar
Cannizzo, J.K., and Cameron, A.G.W.: 1988, Astrophys. J. 330, 327.Google Scholar
Cannlzzo, J.K., and Wheeler, J.C.: 1984, Astrophys. J. Suppl. 55, 367.Google Scholar
Cox, D.P., and Tucker, W.H.: 1969, Astrophys. J. 157, 1157.Google Scholar
Frank, J., King, A.R., and Raine, D.J.: 1985, Accretion Power in Astrophysics, (Cambridge: Cambridge University Press).Google Scholar
Jordan, C., and Brown, A.: 1981, in Solar Phenomena in Stars and Stellar Systems, ed. Bonnet, R.M. and Dupree, A.K. (Dordrecht: Reidel), p. 199.CrossRefGoogle Scholar
Kriz, S., and Hubeny, I.: 1986, Bull. Astron. Inst. Czechosl. 37, 129.Google Scholar
Lynden-Bell, D.: 1969, Nature 233, 690.Google Scholar
Lynden-Bell, D., and Pringle, J.E.: 1974, Mon. Not. R.A.S. 168, 603.Google Scholar
Mayo, S.K., Wickramasinghe, D.T., and Whelan, J. A. J.: 1980, Mon. Not. R.A.S. 193, 793.Google Scholar
McWhirter, R. W. P., Thonemann, P.C., and Wilson, R.: 1975, Astron. Astrophys. 40, 63.Google Scholar
Meyer, F., and Meyer-Hofmeister, E.: 1982, Astron. Astrophys. 106, 34.Google Scholar
Meyer, F., and Meyer-Hofmeister, E.: 1983, Astron. Astrophys. 128, 420.Google Scholar
Mihalas, D.: 1978, Stellar Atmospheres (San Francisco: Freeman).Google Scholar
Plavec, M.J.: 1980, in Close Binary Stars: Observations and Interpretation, ed. Plavec, M.J., Popper, D.M. and Ulrich, R.K. (Dordrecht: Reidel), p. 251.Google Scholar
Plavec, M.J.: 1985 in Interacting Binaries, ed. Eggleton, P.P. and Pringle, J.E. (Dordrecht: Reidel), p. 155.Google Scholar
Pringle, J.E.: 1981, Ann. Rev. Astron. Astrophys. 19, 137.Google Scholar
Schwarzenberg-Czerny, A.: 1981, Acta Astron. 31, 241.Google Scholar
Shakura, N.I., and Sunyaev, R.A.: 1973, Astron. Astrophys. 24, 337.Google Scholar
Shaviv, G., and Wehrse, R.: 1986, Astron. Astrophys. 159, L5.Google Scholar
Tylenda, R.: 1981, Acta Astron. 31, 127.Google Scholar
Wade, R.A.: 1984, Mon. Not. R.A.S. 208, 381.Google Scholar
Wade, R.A.: 1988, Astrophys. J. (in press).Google Scholar
Williams, R.E.: 1980, Astrophys. J. 235, 939.Google Scholar
Williams, R.E., and Ferguson, D.H.: 1982, Astrophys. J. 257, 672.Google Scholar
Williams, R.E., and Shipman, H.L.: 1988, Astrophys. J. 326, 738.Google Scholar