Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T14:54:26.324Z Has data issue: false hasContentIssue false

Supernova Remnants

Published online by Cambridge University Press:  12 April 2016

S.A.E.G. Falle*
Affiliation:
Department of Applied Mathematical Studies, The University, Leeds LS2 9JT, U.K.

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this review I will concentrate on older remnants, by which I mean those in which radiative cooling is important somewhere and the swept up mass is sufficiently large for the details of the initial explosion not to matter. For such remnants it is the optical emission which is crucial since it allows us to deduce a great deal about the physical state of the emitting gas provided we are careful about how we interprete it. Without discussing any particular remnant in detail, I will consider how large and small scale density variations in the ambient medium affect the appearance and energetics of such remnants.

Type
II. Mechanical Energy Sources
Copyright
Copyright © Springer-Verlag 1989

References

References.

Avedisova, V.S. 1974. Sov. Astron.,18,283.Google Scholar
Bertschinger, E. 1986. Astrophys. J.,304,154.Google Scholar
Braun, R. 1987. IAU Colloquium 101, Penticton, Canada, p.363.Google Scholar
Bryson, A.E. & Gross, R.W.F. 1961. J. Fluid Mech., 10, 1 Google Scholar
Charles, P.A, Kahn, S.M. & McKee, C.F. 1985. Astrophys. J.,295,456.CrossRefGoogle Scholar
Chevalier, R.A; & Imamura, J.N. 1982. Astrophys. J.,261,543.CrossRefGoogle Scholar
Chevalier, R.A. & Theys, J.C. 1975. Astrophys. J.,195,53.CrossRefGoogle Scholar
Cox, D.P. 1972. Astrophys. J.,178,159.Google Scholar
Dwek, E. 1987. IAU Colloquium 101, Penticton, Canada, p.363.Google Scholar
Falle, S.A.E.G. 1975. Mon. Not. R. astr. Soc.,172,55.CrossRefGoogle Scholar
Falle, S.A.E.G. 1981. Mon. Not. R. astr. Soc.,195,1011.CrossRefGoogle Scholar
Falle, S.A.E.G., Garlick, A.R. & Pidsley, P.H. 1984. Mon. Not. R. astr.Soc,208,925.Google Scholar
Gull, S.F. 1973. Mon. Not. R. astr. Soc.,161,47.CrossRefGoogle Scholar
Hamilton, A.J.S. 1985. Astrophys. J.,291,523.CrossRefGoogle Scholar
Heathcote, S.R. & Brand, P.W.J.L. 1983. Mon. Not. R. astr. Soc.,203,67.Google Scholar
Imamura, J.N., Wolff, M.T. & Durisen, R.H. 1984. Astrophys. J.,276,667.Google Scholar
Innes, D.E., Giddings, J.R. & Falle, S.A.E.G. 1987. Mon. Not. R. astr. Soc.,226,67.CrossRefGoogle Scholar
Kahn, F.D. 1976. Astr. & Astrophys.,50,145.Google Scholar
Langer, S.H., Chanmugam, G. & Shaviv, G. 1981. Astrophys. J.,245,L23.Google Scholar
Langer, S.H., Chanmugam, G. & Shaviv, G. 1982. Astrophys. J.,258,289.CrossRefGoogle Scholar
McCray, R., Stein, R.F. & Kafatos, M. 1975. Astrophys. J.,196,565.CrossRefGoogle Scholar
McKee, C.F. & Cowie, L.L. 1975. Astrophys. J.,195,715 Google Scholar
Nittmann, J., Falle, S.A.E.G. & Gaskell, P.H. 1982. Mon. Not. R. astr. Soc.,201,833.CrossRefGoogle Scholar
Raga, A.C. & Böhm, K.H. 1987. Astrophys. J.,323,193.Google Scholar
Raymond, J.C., Black, J.H., Dupree, A.K. & Hartmann, L. 1980. Astrophys. J.,238,881.Google Scholar
Raymond, J.C., Davis, M., Gull, T.R. & Parker, R.A.R. 1980. Astrophys. J.,238,L21.Google Scholar
Sgro, A.G. 1975. Astrophys. J.,197,621.Google Scholar
Shull, P., Dyson, J.E., Kahn, F.D. & West, K.A. 1985. Mon. Not. R. astr. Soc.,212,799.CrossRefGoogle Scholar
Whitham, G.B. 1974. Linear and Nonlinear Waves, Wiley Interscience, chapter 8.Google Scholar
Woltjer, L. 1972. Ann. Rev. Astron. Astrophys.,10,129.Google Scholar
Woodward, P.R. 1976. Astrophys. J.,207,484 Google Scholar