Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T06:52:48.887Z Has data issue: false hasContentIssue false

Star/Disk Interaction in the Nuclei of Active Galaxies

Published online by Cambridge University Press:  12 April 2016

D.N.C. Lin*
Affiliation:
Lick Observatory, University of California, Santa Cruz, CA 95064, USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The most definitive evidence for an accretion disk is provided by the discovery of megamasers (Claussen et al. 1984) which appear to be located in a molecular torus around the nucleus of the mildly active galaxy NGC 4258. Confirmation of Keplerian rotation speed was obtained from radio interferometer (Nakai et al. 1993) and VLBI observations (Greenhill, this volume). Based on the correlation between the spatial locations and radial velocities of the masers, Moran et al. (1995) deduced that the masers are located in a disk at radii R = 0.13–0.26 pc around a black hole with a mass M ≈ 3.5 × 107M (Watson & Wallin 1994, Maoz 1995). A limit on the thickness (H < 2.5 × 10−3R) is deduced from the velocity dispersion of the maser sources. The mass-diffusion time scale is estimated to be τd > 1015 α−1 s, where α is the viscosity parameter. An efficient angular-momentum transfer mechanism (α > 0.1) is needed for τd ≈ 108 yr, which is the disk evolution time scale inferred from the correlation between interacting galaxies and intense AGN activities (MacKenty 1989, Hernquist 1989). A relatively large value of a is also required to account for the accretion rate needed to power the X-ray flux of NGC 4258.

Type
I. X-Rays and the Nuclear Regions of Active Galaxies
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Artymowicz, P. 1994, ApJ, 423, 581.Google Scholar
Artymowicz, P., Lin, D.N.C., & Wampler, E.J. 1993, ApJ, 409, 592.CrossRefGoogle Scholar
Balbus, S.A., & Hawley, J.F. 1991, ApJ, 376, 214.CrossRefGoogle Scholar
Brandenburg, A., Nordlund, A., Stein, R.F., & Torkelsson, U. 1996, ApJ, 458, L45.Google Scholar
Claussen, M.J., Heiligman, G.M., Lo, K.Y. 1984, Nature, 310, 298.CrossRefGoogle Scholar
Chevalier, R. 1993, ApJ, 411, L33.Google Scholar
Davidson, K. 1977, ApJ, 218, 20.Google Scholar
Hernquist, L. 1989, Nature, 340, 687.Google Scholar
Lauer, T.R., et. al. 1992, AJ, 103, 703.Google Scholar
Lin, D.N.C., Artymowicz, P., & Wampler, E.J. 1994, in Theory of Accretion Disks-2, eds. Duschl, W.J. et al. (Dordrecht: Kluwer), 235.Google Scholar
Lin, D.N.C., & Papaloizou, J.C.B. 1986, ApJ, 307, 395.CrossRefGoogle Scholar
Lyne, A.G., & Lorimer, D.R. 1994, Nature, 369, 127.Google Scholar
MacKenty, J.W. 1989, ApJ, 343, 125.Google Scholar
Maoz, E. 1995, ApJ, 447, L91.Google Scholar
Moran, J., et al. 1995, Proc. Nat. Acad. Sci., in press.Google Scholar
Nakai, N., Inoue, M., & Miyoshi, M. 1993, Nature, 361, 45.Google Scholar
Narayan, R., & Ostriker, J.P. 1990, ApJ, 352, 222.Google Scholar
Rees, M.J., Netzer, H., & Ferland, G.J. 1989, ApJ, 347, 640.Google Scholar
Rozyczka, M., Bodenheimer, P.H., & Lin, D.N.C. 1996, MNRAS, 276, 597.CrossRefGoogle Scholar
Stone, J.M., Hawley, J.F., Gammie, C.F., & Balbus, S.A. 1996, ApJ, 463, 656.Google Scholar
Syer, D., Clarke, C.J., & Rees, M.J. 1991, MNRAS, 250, 505.Google Scholar
Watson, W.D., & Wallin, B.K. 1994, ApJ, 432, L35.CrossRefGoogle Scholar