Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T14:12:24.445Z Has data issue: false hasContentIssue false

Star Cluster Simulations: The State of The Art

Published online by Cambridge University Press:  12 April 2016

Sverre J. Aarseth*
Affiliation:
Institute of Astronomy, Madingley Road, Cambridge, England

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper concentrates on four key tools for performing star cluster simulations developed during the last decade which are sufficient to handle all the relevant dynamical aspects. First we discuss briefly the Hermite integration scheme which is simple to use and highly efficient for advancing the single particles. The main numerical challenge is in dealing with weakly and strongly perturbed hard binaries. A new treatment of the classical Kustaanheimo-Stiefel two-body regularization has proved to be more accurate for studying binaries than previous algorithms based on divided differences or Hermite integration. This formulation employs a Taylor series expansion combined with the Stumpff functions, still with one force evaluation per step, which gives exact solutions for unperturbed motion and is at least comparable to the polynomial methods for large perturbations. Strong interactions between hard binaries and single stars or other binaries are studied by chain regularization which ensures a non-biased outcome for chaotic motions. A new semi-analytical stability criterion for hierarchical systems has been adopted and the long-term effects on the inner binary are now treated by averaging techniques for cases of interest. These modifications describe consistent changes of the orbital variables due to large Kozai cycles and tidal dissipation. The range of astrophysical processes which can now be considered by N-body simulations include tidal capture, circularization, mass transfer by Roche-lobe overflow as well as physical collisions, where the masses and radii of individual stars are modelled by synthetic stellar evolution.

Type
Stellar Systems
Copyright
Copyright © Kluwer 1999

References

Aarseth, S.J.: 1972, Gravitational N-Body Problem, ed. Lecar, M. (Reidel), 373.Google Scholar
Aarseth, S.J.: 1985, Multiple Time Scales, ed. Brackbill, J.U. and Cohen, B.I. (Academic Press, New York), 377 Google Scholar
Aarseth, S.J.: 1994, Galactic Dynamics and N-Body Simulations, ed. Contopoulos, G., Spyrou, N.K. and Vlahos, L. (Springer-Verlag), 277.Google Scholar
Aarseth, S.J.: 1996, Dynamical Evolution of Star Clusters, ed. Hut, P. and Makino, J. (Kluwer), 161.Google Scholar
Aarseth, S.J. and Heggie, D.C.: 1998, Mon. Not. R. astr. Soc, 297, 794.Google Scholar
Aarseth, S.J. and Zare, K.: 1974, Celest. Mech., 10, 185.CrossRefGoogle Scholar
Ahmad, A. and Cohen, L.: 1973, J. Comput. Phys., 12, 389.CrossRefGoogle Scholar
van Albada, T.S.: 1968, Bull. Ast. Inst. Neth., 19, 479.Google Scholar
Bettis, D.G. and Szebehely, V.G.: 1972, Gravitational N-Body Problem,ed. Lecar, M. (Reidel), 388.Google Scholar
Bulirsch, R. and Stoer, J.: 1966, Num. Math., 8, 1.Google Scholar
Eggleton, P.P.: 1997, personal communication.Google Scholar
Eggleton, P.P. and Kiseleva, L.K.: 1995, Astrophys. J., 455, 640.CrossRefGoogle Scholar
Funate, Y., Hut, P., McMillan, S. and Makino, J.: 1996, A.J., 112, 1697.Google Scholar
Harrington, R.S.: 1972, Celest. Mech., 6, 322.Google Scholar
Harrington, R.S.: 1977, A.J., 82, 753.Google Scholar
Heggie, D.C.: 1995, personal communication.Google Scholar
Kokubo, E., Yoshinaga, K. and Makino, J.: 1998, Mon. Not. R. astr. Soc, 297, 1067.CrossRefGoogle Scholar
Kozai, Y. 1962, A.J., 67, 591.Google Scholar
Kustaanheimo, P. and Stiefel, E.: 1965, J. Reine Angew. Math., 218, 204.CrossRefGoogle Scholar
Makino, J.: 1991, Astrophys. J., 369, 200.CrossRefGoogle Scholar
Makino, J. and Aarseth, S.J.: 1992, Publ. Astron. Soc. Japan, 44, 141.Google Scholar
Mardling, R.A.: 1991, Ph.D. Thesis, Monash University.Google Scholar
Mardling, R.A.: 1995, Astrophys. J., 450, 722.CrossRefGoogle Scholar
Mardling, R. and Aarseth, S.: 1998, Proceedings NATO ASI, Maratea, ed. Roy, A.E., Steves, B. and Barnett, A.D. (Kluwer), in press.Google Scholar
Mardling, R.A. and Aarseth, S.J.: 1999, submitted.Google Scholar
Mardling, R.A. and Eggleton, P.P.: 1998, in preparation.Google Scholar
McMillan, S.L.W.: 1986, The Use of Supercomputers in Stellar Dynamics ed. Hut, P. and McMillan, S., (Springer-Verlag), 156.CrossRefGoogle Scholar
McMillan, S.L.W., Hut, P. and Makino, J.: 1990, Astrophys. J., 362, 522.Google Scholar
Mikkola, S. 1983, Mon. Not. R. astr. Soc., 203, 1107.Google Scholar
Mikkola, S. and Aarseth, S.J.: 1990, Celest. Mech. Dyn. Astron., 47, 375.Google Scholar
Mikkola, S. and Aarseth, S.J.: 1993, Celest. Mech. Dyn. Astron., 57, 439.Google Scholar
Mikkola, S. and Aarseth, S.J.: 1996, Celest. Mech. Dyn. Astron., 64, 197.Google Scholar
Mikkola, S. and Aarseth, S.J.: 1998, New Astron., 3, 309.Google Scholar
Portegies Zwart, S., Hut, P., Makino, J. and McMillan, S.L.W.: 1998, Astron. Astrophys., 337, 363.Google Scholar
Spurzem, R.: 1999, The Journal of Computational and Applied Mathematics, ed. Riffert, H. and Wemer, K. (Elsevier), in press.Google Scholar
Szebehely, V. and Zare, K.: 1977, Astron. Astrophys., 58, 145.Google Scholar
Stumpff, K.: 1962, Himmelsmechanik, Band I, (VEB, Berlin).Google Scholar
Tout, C.A., Aarseth, S.J., Pols, O.R. and Eggleton, P.P.: 1997, Mon. Not. R. astr. Soc, 291, 732.Google Scholar
Zare, K.: 1977, Celest. Mech., 16, 35.Google Scholar