Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T19:42:34.922Z Has data issue: false hasContentIssue false

s-Process Enrichment in Low-Mass Agb Stars

Published online by Cambridge University Press:  12 April 2016

R. Gallino*
Affiliation:
Istituto di Fisica Generale dell'Università, Torino, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

After a brief description of the developments of the theory of s-process nucleosynthesis, the difficulties recently encountered in envisaging reliable astrophysical conditions for obtaining a solar-system distribution of s-isotopes are discussed. In particular, while the reaction 22Ne(α, n)25Mg may account for the nucleosynthesis of the weak s-component in massive stars, it fails to reproduce the main s-component in intermediate mass stars. The efficiency of the alternative reaction 13C(α, n)160 occurring in low mass stars during recurring thermal instabilities of the He shell is then analyzed. It is shown that, contrary to previous expectations, the 13C source well reproduces the main component, provided that realistic physical conditions are assumed for the temporal behaviour of the pulse and the effect of the light n-absorbers (especially 12C) is properly taken into account. The results satisfactorily compare with the constraints of the classical s-analysis. Key observational evidences also appear to be in agreement with this scenario.

Type
3. Evolution of Peculiar Red Giant Stars
Copyright
Copyright © Cambridge University Press 1989

References

Allen, B. J., Gibson, J. H., and Macklin, R. L. 1971, Adv. Nucl. Phys., 4, 205.Google Scholar
Anders, E., and Ebihara, M. 1982, Geochim. Cosmochim. Acta, 46, 2263.Google Scholar
Bao, Z. Y., and Käppeler, F. 1987, Atomic Data and Nucl. Data Tables, 36, 411.CrossRefGoogle Scholar
Barbuy, B., Spite, F., and Spite, M. 1985, Astr. Ap., 144, 343.Google Scholar
Becker, S. A. 1981, in Physical Processes in Red Giants, ed. Iben, I. Jr. and Renzini, A. (Dordrecht: Reidel), p. 141.Google Scholar
Beer, H. 1986a, in Nucleosynthesis and its Implications on Nuclear and Particle Physics, ed. by Audouze, J. and Mathieu, N. (Dordrecht: Reidel), p. 263.Google Scholar
Beer, H. 1986b, in Advances in Nuclear Astrophysics, ed. Vangioni-Flam, E., Audouze, J., Cassé, M., Chieze, J. P. and J. Tran Thanh Van (Paris: Editions Frontières), p. 375.Google Scholar
Beer, H., and Macklin, R. L. 1988a, Ap. J., 331, 1047.Google Scholar
Beer, H., and Macklin, R. L. 1988b, Measurements of the 86'87Rb Capture Cross Section for e-Process Studies, Ap. J., in press.Google Scholar
Beer, H., Walter, G., and Macklin, R. L. 1985, in Capture Gamma-Rays Spectroscopy and Related Topics, ed. by Raman, S. (New York: American Institute of Physics), p. 778.Google Scholar
Beer, H., Walter, G., Macklin, R. L., and Patchett, P. J. 1984, Phys. Rev. C30, 464.Google Scholar
Blanco, V. M., McCarthy, M. F., and Blanco, B. M. 1980, Ap. J., 242, 938.Google Scholar
Boothroyd, A., and Sackmann, I.-J. 1988a, Ap. J., 328, 653.Google Scholar
Boothroyd, A., and Sackmann, I.-J. 1988b, Ap. J., 328, 671.Google Scholar
Brehm, K., Becker, H. W., Rolfs, C., Trautvetter, H. P., Käppeler, F., and Ratyn-ski, W. 1988, Z. Physik A330, 167.Google Scholar
Burbidge, G. R., Burbidge, E. M., Fowler, W. A., and Hoyle, F. 1957, Rev. Mod. Phys., 29, 54.Google Scholar
Busso, M., and Gallino, R. 1983, Ap. and Space Sci., 94, 273.Google Scholar
Busso, M., and Gallino, R. 1985, Astron. Astrophys., 151, 205.Google Scholar
Busso, M., Picchio, G., Gallino, R., and Chieffi, A. 1988a, Ap. J., 326, 196.Google Scholar
Busso, M., Gallino, R., Käppeler, F., Picchio, G., and Raiteri, C. M., 1988b, Comparison of s-Processing in Low Mass AGB Stars with the Classical s- Analysis, in preparation.Google Scholar
Cameron, A. G. W. 1955, Ap. J., 121, 1446.Google Scholar
Clayton, D. D. 1988, Nature, 332, 683.Google Scholar
Clayton, D. D., Fowler, W. A., Hull, T. E., and Zimmerman, B. A. 1961, Ann. Phys., 12, 331.Google Scholar
Clayton, D. D., and Rassbach, M. E. 1967, Ap. J., 148, 69.Google Scholar
Cohen, J. G., Frogel, J. A., Persson, S. A., and Elias, J. H. 1981, Ap. J., 249, 481.Google Scholar
Cosner, R., Iben, I. Jr., and Truran, J. W. 1980, Ap. J. Letters, 238, L91.Google Scholar
Couch, R. G., Schmiedekamp, A. R., and Arnett, W. D., 1974, Ap. J., 190, 95.Google Scholar
Cowley, C. R., and Downs, P. L. 1980, Ap. J., 236, 648.Google Scholar
Despain, R. H. 1980, Ap. J. Letters, 236, L165.Google Scholar
Dominy, J. F., and Wallerstein, G. 1986, Ap. J., 310, 371.Google Scholar
Fowler, W. A., Caughlan, G. R., and Zimmerman, B. A. 1967, Ann. Rev. Astron. Astrophys., 5, 525.Google Scholar
Fuller, G. M., Fowler, W. A., and Newman, M. J. 1983, Ap. J. Supp., 329, 943.Google Scholar
Gallino, R., and Busso, M. 1985, in From Nuclei to Stars, ed. Molinari, A. and Ricci, R. A. (Amsterdam: North-Holland), p.309.Google Scholar
Gallino, R., Busso, M., Picchio, G., Raiteri, C. M., and Renzini, A. 1988a, Ap. J. Lett., 334, L45.Google Scholar
Gallino, R., Busso, M., Picchio, G., Raiteri, C. M., 1988b, An Interpretation of Ne, Kr and Xe Isotopie Anomalies in the Murchison and Murray Meteoritic Inclusions, 1988, in preparation.Google Scholar
Habing, H. J. 1987, in The Galaxy, ed. Gilmore, G. and Carswell, B. (Cambridge: Cambridge Univ. Press), p.173.Google Scholar
Hollowell, D. E., and Iben, I. Jr., 1988a, in Atmospheric Diagnostics of Stellar Evolution, Proc. IAU Coll. no. 108 (Berlin: Springer-Verlag), in press.Google Scholar
Hollowell, D. E., and Iben, I. Jr., 1988b, Ap. J. Letters, 333, L25.Google Scholar
Hollowell, D. E., and Iben, I. Jr., 1988c, Neutron Production and Neutron-Capture Nucleosynthesis in a Low-Mass, Low-Metallicity AGB Star, preprint.Google Scholar
Howard, W. M., Mathews, G. J., Takahashi, K., and Ward, R. A. 1986, Ap. J., 309, 633.Google Scholar
Iben, I. Jr., 1975a, Ap. J., 196, 525.Google Scholar
Iben, I. Jr., 1975b, Ap. J., 196, 549.Google Scholar
Iben, I. Jr., 1976, Ap. J., 208, 165.Google Scholar
Iben, I. Jr., 1977, Ap. J., 217, 788.Google Scholar
Iben, I. Jr., 1982, Ap. J., 260, 821.Google Scholar
Iben, I. Jr., 1983, Ap. J. Lett., 275, L65.CrossRefGoogle Scholar
Iben, I. Jr., and Renzini, A. 1982a, Ap. J. Lett., 259, L79.Google Scholar
Iben, I. Jr., and Renzini, A. 1982b, Ap. J. Lett., 263, L23.Google Scholar
Iben, I. Jr., and Renzini, A. 1983, Ann. Rev. Astr. Ap., 21, 271.Google Scholar
Jorgensen, U. G. 1988, Nature, 332, 702.Google Scholar
Jorissen, A., and Arnould, M. 1986, in Nucleosynthesis and its Implications on Nuclear and Particle Physics, ed. by Audouze, J. and Mathieu, N. (Dordrecht: Reidel), p. 303.Google Scholar
Käppeler, F. 1986, in Advances in Nuclear Astrophysics, ed. Vangioni-Flam, E., Audouze, J., Cassé, M., Chieze, J. P. and Tran Thanh Van, J. (Paris: Editions Frontières), p. 355.Google Scholar
Käppeler, F., Beer, H., Wisshak, K., 1988, private communication.Google Scholar
Käppeler, F., Beer, H., Wisshak, K., Clayton, D. D., Macklin, R. L., and Ward, R. A. 1982, Ap. J., 257, 821.Google Scholar
Klay, N., and Käppeler, F. 1988, Phys. Rev. C38, 295.Google Scholar
Krishnaswamy-Gilroy, K., Sněden, C., Pilachowski, CA., and Cowan, J.J. 1988, Ap. J., 327, 298.Google Scholar
Lamb, S.A., Howard, W.M., Truran, J.W., and Iben, I. Jr., 1977, Ap. J., 217, 213.Google Scholar
Lambert, D. L. 1985, in Cool Stars with Excesses of Heavy Elements, eds. Jaschek, M. and Keenan, P. C., (Dordrecht: Reidel), p.191.Google Scholar
Lattanzio, J. C. 1987, Ap. J. Lett., 313, L15.Google Scholar
Little, S. J., Little-Marenin, I. R., and Bauer, W. H. 1987, A. J., 93, 1539.Google Scholar
Luck, R. E., and Bond, H. E. 1982, Ap. J., 259, 792.Google Scholar
Malaney, R. A. 1986a, M.N.R.A.S., 223, 683.Google Scholar
Malaney, R. A. 1986b, M.N.R.A.S., 223, 709.Google Scholar
Malaney, R. A. 1986c, Advances in Nuclear Astrophysics, ed. Vangioni-Flam, E., Audouze, J., Casse', M., Chieze, J. P. and Tran Thanh Van, J. (Paris: Editions Frontières), p. 407.Google Scholar
Malaney, R. A. 1987, Ap. J., 321, 832.Google Scholar
Malaney, R. A., and Lambert, D. L. 1988, M.N.R.A.S., in press.Google Scholar
Mathews, G. J., and Ward, R. A. 1985, Rep. Progr. Phys., 48, 1371.Google Scholar
Mould, J., and Reid, N. 1987, in Late Stages of Stellar Evolution, ed. Kwok, S. and Pottasch, S.R., (Dordrecht: Reidel), p.209.Google Scholar
Ott, U., Begemann, F., Yang, J., and Epstein, S. 1988, Nature 332, 700.Google Scholar
Peery, B. F., and Beebe, R. F. 1970, Ap. J., 160, 619.Google Scholar
Peters, J. G. 1968, Ap. J., 154, 224.Google Scholar
Picchio, G., Busso, M., Gallino, R., and Raiteri, C. M. 1988a, in Mass Outflows from Stars and Galactic Nuclei, ed. Bianchi, L. and Gilmozzi, R. (Dordrecht: Kluwer Academic Pubi.), p. 279.Google Scholar
Picchio, G., Busso, M., Gallino, R., and Raiteri, C. M. 1988b, The Neutron Source 13C(α, n)16O in Thermally Pulsing Stars and the s-Processing, preprint.Google Scholar
Prantzos, N., Arnould, M., and Arcoragi, J.-P. 1987, Ap. J., 315, 209.CrossRefGoogle Scholar
Raiteri, C. M., Busso, M., Gallino, R., Picchio, G., and Renzini, A. 1988, The Effect of Light n-Poisons on the s-Nucleosynthesis of AGB Low Mass Stars of Different Metallicity, in preparation.Google Scholar
Ratynski, W., and Käppeler, F. 1988, Phys. Rev. C37, 595.Google Scholar
Reeves, H. 1966, Ap. J., 146, 447.Google Scholar
Reffo, G. 1988, private communication.Google Scholar
Sackmann, I.-J., 1980, Ap. J. Lett., 241, L37.Google Scholar
Sanders, R. H. 1967, Ap. J., 150, 971.Google Scholar
Schwarzschild, M., and Härm, R. 1965, Ap. J., 142, 855.Google Scholar
Schwarzschild, M., and Härm, R. 1967, Ap. J., 150, 961.Google Scholar
Seeger, P. A., Fowler, W. A., and Clayton, D. D. 1965, Ap. J. Suppl., 11, 121.Google Scholar
Smith, V. V., and Lambert, D. L. 1985, Ap. J. , 294, 326.Google Scholar
Smith, V. V., and Lambert, D. L. 1986, Ap. J. , 311, 843.Google Scholar
Smith, V. V., and Lambert, D. L. 1988, s-Process Enriched Cool Stars with and without Technetium: Clues to AGB and Binary Star Evolution, Ap. J. , in press.Google Scholar
Smith, V. V., Lambert, D. L., and McWilliam, A. 1987, Ap. J. , 320, 865.Google Scholar
Smith, V. V., and Wallerstein, G. 1983, Ap. J., 273, 742.Google Scholar
Spite, M., and Spite, F. 1978, Astr. Ap., 67, 23.Google Scholar
Sugimoto, D., and Nomoto, K. 1975, Pubi. Astr. Soc. Japan, 27, 197.Google Scholar
Takahashi, K., and Yokoi, K. 1987, Atomic Data and Nucl. Data Tables, 36, 375.Google Scholar
Thielemann, F.-K., and Arnett, W. D. 1985, Ap. J., 295, 589.Google Scholar
Tomkin, J., and Lambert, D. L. 1986, Ap. J., 311, 819.Google Scholar
Truran, J. W., and Iben, I. Jr., 1977, Ap. J., 216, 797.Google Scholar
Ulrich, R. K. 1973, in Explosive Nucleosynthesis, ed. Schramm, D. N. and Arnett, W. D. (Univ. of Texas: Austin), p. 139.Google Scholar
Wallerstein, G., and Dominy, J. F. 1988, Ap. J., 330, 937.Google Scholar
Walter, G., Beer, H., Käppeler, F., Reffo, G., and Fabbri, F. 1986, Astron. Astrophys., 167, 186.Google Scholar
Ward, R. A., and Newman, M. J. 1978, Ap. J., 219, 195.Google Scholar
Weigert, A. 1966, Z. Physik, 64, 395.Google Scholar
Winters, R. R., and Macklin, R. L. 1988, Ap. J., 329, 943.Google Scholar
Zook, A. C. 1978, Ap. J. Lett., 221, L113.Google Scholar
Zook, A. C. 1985, Ap. J., 289, 356.Google Scholar