Published online by Cambridge University Press: 12 April 2016
After a brief description of the developments of the theory of s-process nucleosynthesis, the difficulties recently encountered in envisaging reliable astrophysical conditions for obtaining a solar-system distribution of s-isotopes are discussed. In particular, while the reaction 22Ne(α, n)25Mg may account for the nucleosynthesis of the weak s-component in massive stars, it fails to reproduce the main s-component in intermediate mass stars. The efficiency of the alternative reaction 13C(α, n)160 occurring in low mass stars during recurring thermal instabilities of the He shell is then analyzed. It is shown that, contrary to previous expectations, the 13C source well reproduces the main component, provided that realistic physical conditions are assumed for the temporal behaviour of the pulse and the effect of the light n-absorbers (especially 12C) is properly taken into account. The results satisfactorily compare with the constraints of the classical s-analysis. Key observational evidences also appear to be in agreement with this scenario.