Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T06:52:35.974Z Has data issue: false hasContentIssue false

Solar Simple Bursts Observed with High Spectral Resolution in the 18-23 GHz Range

Published online by Cambridge University Press:  12 April 2016

H. S. Sawant
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), Cx. Postal 515, 12201-970, São José dos Campos, SP, Brazil
R. R. Rosa
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), Cx. Postal 515, 12201-970, São José dos Campos, SP, Brazil
J. R. Cecatto
Affiliation:
Instituto Nacional de Pesquisas Espaciais (INPE), Cx. Postal 515, 12201-970, São José dos Campos, SP, Brazil
N. Gopalswamy
Affiliation:
University of Maryland, College Park, Md 20742

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For the first time, solar bursts in the frequency range of (18-23) GHz have been observed with high-time (0.6-1.2 s) and high-frequency resolution (1 GHz), by using the Itapetinga 13.7m diameter antenna. Here, we investigate the microwave type “simple low level (< 10 SFU) bursts” associated with the impulsive phase of solar flares. Observed properties of these simple bursts are: rise time tr ~3 s, decay time td ~ 5 s and spectral index ranging between −1 and −4. These bursts were found to be associated with SF or SN flares as seen in . The above properties suggest that they are likely to be a microwave counterpart of elementary flare bursts. In the majority of the cases the spectral evolution is soft-hard-soft. This suggests a nonthermal gyrosynchrotron mechanism for generating these elementary flare bursts. Estimated parameters of these simple burst sources are height (h ~ 2400 km), electron density (Nє < 8.8 × 109 cm−3 ), and magnetic field (B ~ 300 G).

Subject headings: radiation mechanisms: nonthermal — Sun: radio radiation

Type
Poster Papers
Copyright
Copyright © The American Astronomical Society 1994

References

De Jager, C., & De Jonge, G. 1978, Sol. Phys., 58, 177 CrossRefGoogle Scholar
De Jager, C., & Sakai, J. 1991, Sol. Phys., 133, 395 Google Scholar
Dulk, G.A. 1985, ARA&A, 23, 169 Google Scholar
Holman, G.D. 1985, ApJ, 293, 584 Google Scholar
Hurford, G.J., Read, R.B., & Zirin, H. 1986, Sol. Phys., 94, 413 CrossRefGoogle Scholar
Kaufman, P., Correia, E., Costa, J.E.R., Sawant, H.S., & Zodi Vaz, A.M. 1985, Sol. Phys., 95, 155 Google Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A., & Vetterling, W.T. 1988, Numerical Recipes: The Art of Scientific Computing. (Cambridge: Cambridge Univ. Press)Google Scholar
Rosa, R.R. 1992, M.S. thesis, DAS-INPE, Brazil Google Scholar
Sawant, H.S., & Cecatto, J.R. 1990, Rev. Mexicana Astron. Af., 21, 552 Google Scholar
Sawant, H.S., Cecatto, J.R., Dennis, B.R., Gary, D.E., & Hurford, G.J. 1993, Adv. Space Sci., 13, 191 Google Scholar
Sawant, H.S., Rosa, R.R., Cecatto, J.R., & Fernandes, F.C.R. 1992, in Lecture Notes in Physics 339, Eruptive Solar Flares, ed. Svestka, Z., Jackson, B.V., & Machado, M.E. (London: Springer), 367 Google Scholar
Ulich, B.L., & Haas, R.W. 1976, ApJS, 30, 247 Google Scholar
Van Beek, H.F., De Feiter, L.D., & De Jager, C. 1974, in Correlated Interplenetary and Magnetospheric Observations, ed. Page, D.E. (Dordrecht: Reidel), 533 Google Scholar