No CrossRef data available.
Article contents
Solar Opacities Constrained by Solar Neutrinos and Solar Oscillations
Published online by Cambridge University Press: 12 April 2016
Abstract
This review discusses the current situation for opacities at the solar center, the solar surface, and for the few million kelvin temperatures that occur below the convection zone. The solar center conditions are important because they are crucial for the neutrino production, which continues to be predicted about 4 times that observed. The main extinction effects there are free-free photon absorption in the electric fields of the hydrogen, helium and the CNO atoms, free electron scattering of photons, and the bound-free and bound-bound absorption of photons by iron atoms with two electrons in the 1s bound level. An assumption that the iron is condensed-out below the convection zone, and the opacity in the central regions is thereby reduced, results in about a 25 percent reduction in the central opacity but only a 5 percent reduction at the base of the convection zone. Furthermore, the p-mode solar oscillations are changed with this assumption, and do not fit the observed ones as well as for standard models. A discussion of the large effective opacity reduction by weakly interacting massive particles (WIMPs or Cosmions) also results in poor agreement with observed p-mode oscillation frequencies. The much larger opacities for the solar surface layers from the Los Alamos Astrophysical Opacity Library instead of the widely used Cox and Tabor values show small improvements in oscillation frequency predictions, but the largest effect is in the discussion of p-mode stability. Solar oscillation frequencies can serve as an opacity experiment for the temperatures and densities, respectively, of a few million kelvin and between 0.1 and 10 g/cm3. Current oscillation frequency calculations indicate that possibly the Opacity Library values need an increase of typically 15 percent just at the bottom of the convection zone at 3×106K. Opacities have uncertainties at the photosphere and deeper than the convection zone ranging from 10 to 25 percent. The equation of state that supplies data for the opacity calculations fortunately has pressure uncertainties of only about 1 percent, but opacity uncertainties will always be much larger. A discussion is given about opacity experiments that the stars provide. Opacities in the envelopes of the Hyades G stars, the Cepheids, δ Scuti variables, and the β Cephei variables indicate that significantly larger opacities, possibly caused by iron lines, seem to be required.
- Type
- Part 1: Solar Modelling
- Information
- Copyright
- Copyright © Kluwer 1990