Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T14:13:17.341Z Has data issue: false hasContentIssue false

Slow and Fast Diffusion in Asteroid-Belt Resonances: A Review

Published online by Cambridge University Press:  12 April 2016

S. Ferraz-Mello*
Affiliation:
Instituto Astronômico e Geofísico, Universidade de São Paulo, Caixa Postal 3386, São Paulo, SP, Brasil; [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper reviews recent advances in several topics of resonant asteroidal dynamics as the role of resonances in the transportation of asteroids and asteroidal debris to the inner and outer solar system; the explanation of the contrast of a depleted 2/1 resonance (Hecuba gap) and a high-populated 3/2 resonance (Hilda group); the overall stochasticity created in the asteroid belt by the short-period perturbations of Jupiter’s orbit, with emphasis in the formation of significant three-period resonances, the chaotic behaviour of the outer asteroid belt, and the depletion of the Hecuba gap.

Type
Extended Abstracts
Copyright
Copyright © Kluwer 1999

References

Carusi, A., Kresák, L., Perozzi, E. and Valsecchi, G.B.: 1984, Long-term evolution of short-period comets, Inst. Astrof. Spaz. (Rome), Int. Report 12.Google Scholar
Farinella, P., Froeschlé, C. and Gönczi, R.: 1993, Meteorites from the asteroid 6 Hebe, Celest. Mech. Dyn. Astron., 56, 287305.Google Scholar
Farinella, P., Froeschlé, C. and Gönczi, R.: 1994a, Meteorites delivery and transport, IAU Symposium, 160, 205222.Google Scholar
Farinella, P., Froeschlé, C., Froeschlé, C., Gonczi, R., Hahn, G., Morbidelli, A. and Valsecchi, G.B.: 1994b, Asteroids falling into the Sun, Nature, 371, 314317.Google Scholar
Ferraz-Mello, S.: 1994a, Kirkwood gaps and resonant groups, IAU Symposium, 160, 175188.Google Scholar
Ferraz-Mello, S.: 1994b, The dynamics of the asteroidal 2:1 resonance, Astron. J., 108, 23302337 Google Scholar
Ferraz-Mello, S.: 1996, On the Hecuba gap,IAU Symposium, 172, 177182.Google Scholar
Ferraz-Mello, S.: 1997, A symplectic mapping approach to the study of the stochasticity in asteroidal resonances, Celest. Mech. Dyn. Astron., 65, 421437.Google Scholar
Ferraz-Mello, S. and Klafke, J.C.: 1991, A model for the study of very-high-eccentricity asteroidal motion. The 3:1 resonance, in Predictability, Stability and Chaos in N-Body Dynamical Systems (Roy, A.E., ed.), Plenum Press, New York, (NATO Adv. Stud. Inst. SerBPhys., 272), 177184.Google Scholar
Ferraz-Mello, S., Nesvorný, D. and Michtchenko, T.A.: 1998a, Chaos, diffusion, escape and permanence of resonant asteroids in gaps and groups, in Solar System Formation and Evolution (Lazzaro, D. et al., eds.), ASP, San Francisco, (ASP Conf. Ser., 149), 6582.Google Scholar
Ferraz-Mello, S., Michtchenko, T.A. and Roig, F.: 1998b, The determinat role of Jupiter’s Great Inequality in the depletion of the Hecuba gap, Astron. J., 116, 14911500.Google Scholar
Gladman, B.J., Migliorini, F., Morbidelli, A., Zappalà, V., Michel, P., Cellino, A., Froeschlé, C., Levison, H.F., Mailey, M. and Duncan, M.: 1997, Dynamical Lifetimes of objects injected into asteroid belt resonances, Science, 277, 197201.Google Scholar
Henrard, J.: 1998, The effect of the Great Inequality on the Hecuba gap, Celest. Mech. Dyn. Astron., 69, 187198.Google Scholar
Holman, M.J. and Murray, N.W.: 1998, Chaos in high-order mean-motion resonances in the outer asteroid belt, Astron. J., 112, 12781293.Google Scholar
Klafke, J.C., Ferraz-Mello, S. and Michtchenko, T.: 1992, Very-high-eccentricity librations at some higher-order resonances, IAU Symposium 152, 153158.Google Scholar
Lecar, M., Franklin, F. and Murison, M.: 1992, On predicting long-term orbital instability: A relation between the Lyapunov time and sudden orbital transitions, A stron. J., 104, 12301236.Google Scholar
Michtchenko, T.A. and Ferraz-Mello, S.: 1997, Escape of asteroids from the Hecuba gap, Planet. Sp. Sci., 45, 15871593.Google Scholar
Milani, A. and Farinella, P.: 1994, The age of Veritas asteroid family deduced by chaotic chronology, Nature, 370, 4042.Google Scholar
Moons, M. and Morbidelli, A.: 1995, Secular resonances in mean-motion commensurabilities. the 4/1, 3/1, 5/2 and 7/3 cases, Icarus, 114, 3350.Google Scholar
Moons, M.: 1997, Review of the dynamics in the Kirkwood gaps, Celest. Mech. Dyn. Astron., 65, 175204.Google Scholar
Moons, M., Morbidelli, A. and Migliorini, F.: 1998, Dynamical structure of the 2/1 commensurability with Jupiter and the origin of the resonant asteroids, Icarus, 135, 458468.Google Scholar
Morbidelli, A.: 1996, On the Kirkwood Gap at the 2/1 commensurability with Jupiter, Astron. J., 111, 24532461.Google Scholar
Morbidelli, A. and Moons, M.: 1995, Numerical evidences of the chaotic nature of the 3/1 mean-motion commensurability, Icarus, 115, 6065.Google Scholar
Morbidelli, A., Zappalà, V., Moons, M., Celino, A. and Gonczi, R.: 1995, Asteroid families close to mean motion resonances. Dynamical effects and physical implications, Icarus, 118, 132154.Google Scholar
Morbidelli, A. and Nesvorný, D.: 1998, Numerous weak resonances drive asteroids towards terrestrial planet orbits, Icarus, submitted.Google Scholar
Murray, N. and Holman, M.: 1997, Diffusive chaos in the outer asteroid belt, Astron. J., 114, 1246 1259.Google Scholar
Murray, N., Holman, M. and Potter, M.: 1998, On the origin of chaos in the asteroid belt, Astron. J., 116, 25832589.Google Scholar
Nesvorný, D. and Ferraz-Mello, S.: 1997, On the asteroidal population of the first-order resonances, Icarus, 130, 247258.Google Scholar
Nesvorný, D. and Morbidelli, A.: 1998a, Three-body mean-motion resonances and the chaotic structure of the asteroid belt, Astron. J., 116, 30293037.Google Scholar
Nesvorný, D. and Morbidelli, A.: 1998b, An analytical model of three-body mean-motion resonances, Celest. Mech. Dyn. Astron., submitted.Google Scholar
Roig, F. and Ferraz-Mello, S.: 1999, A symplectic mapping approach of the dynamics of the Hecuba gap, Planet. Sp. Sci., in press.Google Scholar
Zapallà, V., Cellino, A., Gladman, B.J., Manley, S. and Migliorini, F.: 1998, Asteroid showers on Earth after family break-up events, Icarus, 134, 176179.Google Scholar
Wisdom, J.: 1982, The origin of Kirkwood gaps: A mapping for asteroidal motion near the 3/1 commensurability, Astron. J., 85, 11221133.Google Scholar
Wisdom, J.: 1983, Chaotic behaviour and the origin of the 3/1 Kirkwood gap, Icarus, 56, 5174.Google Scholar
Yokoyama, T. and Balthazar, J.M.: 1992, Application of Wisdom’s perturbative method to 5/2 and 7/3 resonances, IA U Symposium, 152, 159166.Google Scholar
Yoshikawa, M.: 1991, Motions of asteroids at the Kirkwood gaps. II, Icarus, 92, 94117.Google Scholar