No CrossRef data available.
Article contents
Short-Term Spectral Variability in the Herbig Ae Star Ab Aur: Preliminary Analysis of Chromospheric Lines1
Published online by Cambridge University Press: 12 April 2016
Extract
The Herbig Ae stars are PMS objects of intermediate mass. Their location in the H-R diagram indicates that they are in the radiative phase of their quasi-static contraction toward the main sequence, i.e. that they do not possess outer convective zones, according to the standard stellar evolution theory (Iben, 1965; Gilliland, 1986). In spite of the expected absence of subphotospheric convective envelopes, these stars show remarkable signs of activity: emission in the Mg II h and k lines, presence of the CIV resonance lines at 1550 A and He I 5875.7 A line, Ca II IR triplet in emission, etc... Considering that stellar activity, witnessed by the same type of indicators in other parts of the H-R diagram, is generally attributed to dynamo magnetic fields and/or acoustic waves generated in the convection zone, these active phenomena are quite paradoxical in the Herbig Ae stars.
The main question concerns the origin of their activity: is this activity linked to phenomena occurring within the stars, like e.g. dynamo-generated magnetic fields, or to an external agent, like e.g. a boundary layer between an accretion disk and the stellar surface? We already have some indirect clues that the activity of the Herbig Ae stars might be of magnetic origin (Praderie et al., 1986; Catala et al. 1986) observed a rotational modulation of lines formed in the wind of AB Aur, prototype of the Herbig Ae stars. By analogy with the solar wind, they proposed that the modulation might be due to the corotation of azimuthal structures in the wind, controlled by a surface magnetic field.
- Type
- VII. Activity, a break of spherical symmetry
- Information
- Copyright
- Copyright © Astronomical Society of the Pacific 1993
Footnotes
Based on observations obtained with the “Bernard Lyot„ telescope, at Pic du Midi Observatory, France.