Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T06:30:01.739Z Has data issue: false hasContentIssue false

Scintillation and the Vela Pulsar’s Magnetosphere

Published online by Cambridge University Press:  12 April 2016

C. R. Gwinn
Affiliation:
University of California, Santa Barbara, CA 93106, U.S.A.
M. C. Britton
Affiliation:
University of California, Santa Barbara, CA 93106, U.S.A.
J. E. Reynolds
Affiliation:
Australia Telescope National Facility, Epping, New South Wales, 2121, Australia
D. L. Jauncey
Affiliation:
Australia Telescope National Facility, Epping, New South Wales, 2121, Australia
E. A. King
Affiliation:
Australia Telescope National Facility, Epping, New South Wales, 2121, Australia
P. M. McCulloch
Affiliation:
Physics Dept., University of Tasmania, Hobart, 7001, Tasmania, Australia
J. E. J. Lovell
Affiliation:
Physics Dept., University of Tasmania, Hobart, 7001, Tasmania, Australia
C. S. Flanagan
Affiliation:
Hartebeesthoek Radio Astronomy Observatory, Krugersdorp, South Africa
D. P. Smits
Affiliation:
Hartebeesthoek Radio Astronomy Observatory, Krugersdorp, South Africa
R. A. Preston
Affiliation:
Jet Propulsion Laboratory, Caltech, Pasadena, CA 91109, U.S.A.
D. L. Jones
Affiliation:
Jet Propulsion Laboratory, Caltech, Pasadena, CA 91109, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radio-wave scattering in the Vela supernova remnant acts as an imperfect lens to resolve the pulsar’s radio emission region. We use this lens to measure the pulsar’s emission region. We suggest that refraction of radiation within the pulsar’s magnetosphere is responsible for the observed size.

Type
Research Article
Copyright
Copyright © Astronomical Society of the Pacific 1998

References

Arons, J., & Barnard, J.J. 1986. ApJ, 302, 120137.Google Scholar
Arons, J., & Scharlemann, E.T. 1979. ApJ, 231, 854879.Google Scholar
Barnard, J.J., & Arons, J. 1986. ApJ, 302, 138162.CrossRefGoogle Scholar
Blandford, R.D., & Scharlemann, E.T. 1976. MNRAS, 174, 5985.Google Scholar
Cheng, K.S., Ho, C., & Ruderman, M. 1986. ApJ, 300, 500521.Google Scholar
Cohen, M.H., Gundermann, E.J., & Harris, D.E. 1967. ApJ, 150, 767780.Google Scholar
Cornwell, T.J., & Napier, P.J. 1988. Radio Sci., 23, 739748.Google Scholar
Cornwell, T.J., Anantharamaiah, K.R., & Narayan, R. 1989. J. Opt. Soc. Am., A 6, 977986.Google Scholar
Daugherty, J.K., Harding, A.K. 1994, ApJ. 429, 325330.Google Scholar
Desai, K.M., et al. 1992. ApJ, 393, 7578.Google Scholar
Goldreich, P., & Julian, W.H. 1969. ApJ, 157, 869888.Google Scholar
Goodman, J.W. 1968. Introduction to Fourier Optics, (New York: McGraw-Hill).Google Scholar
Goodman, J.W. 1985. Statistical Optics (New York: Wiley).Google Scholar
Gwinn, C.R., et al. 1997. ApJ, 483, 5359.Google Scholar
Gwinn, C.R., et al. 1997. ApJ, submitted.Google Scholar
Lyutikov, M. 1997. MNRAS, in press.Google Scholar
Melrose, D.B. & Stoneham, R.J. 1977. Proc. Astr. Soc. Australia, 3, 120122.CrossRefGoogle Scholar
Radhakrishnan, V., & Cooke, D.J. 1969. Ap. Lett., 3, 225229.Google Scholar
Ruderman, M.A., & Sutherland, P.G. 1975. ApJ, 196, 5172.Google Scholar
Salpeter, E.E., 1967. ApJ, 147, 433448.Google Scholar