Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T20:28:19.512Z Has data issue: false hasContentIssue false

Rotating Stellar Interiors (Review Paper)

Published online by Cambridge University Press:  23 September 2016

Robert Connon Smith*
Affiliation:
Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QH, U.K.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rotation has two main qualitative effects on the structure of a star: it distorts the shape and it reduces the total luminosity. The luminosity depends only on the total angular momentum but the shape, and so the observable properties, depends on the internal distribution of angular momentum. The expected distribution, even for main-sequence stars, is an unsolved problem. Redistribution of angular momentum can occur as a result of large-scale circulation currents, instabilities and magnetic stresses and there may be no steady state. If shear instabilities are dominant, then stars may rotate nearly uniformly. Studies of non-radial oscillations might perhaps eventually lead to a direct probing of the internal angular momentum distribution by the methods now being used to study the internal rotation of the Sun. Differential rotation near the surface would probably give rise to turbulent motions, which could generate the mechanical energy flux which seems to be a necessary input to the winds in hot stars.

Type
IIB. The Underlying Stars: Theory
Copyright
Copyright © Cambridge University Press 1987

References

Acheson, D.J. (1978). Phil. Trans. R. Soc., A289, 459500.Google Scholar
Baker, N. & Kippenhahn, R. (1959). Z. Astrophys., 48, 140-54.Google Scholar
Bodenheimer, P. (1971). Astrophys. J., 167, 153-63.Google Scholar
Brown, T.M. (1985). Nature, 317, 591-4.Google Scholar
Chandrasekhar, S. (1933). Mon. Not. R. astr. Soc., 93, 390-405.Google Scholar
Chandrasekhar, S. (1969). Ellipsoidal Figures of Equilibrium. New Haven: Yale University Press.Google Scholar
Christensen-Dalsgaard, J., Duvall, T.L. Jr, Gougli, D.O., Harvey, J.W. & Rhodes, E.J. Jr (1985). Nature, 315, 378-82.CrossRefGoogle Scholar
Clement, M.J. (1969). Astrophys. J., 156, 1051-68.Google Scholar
Clement, M.J. (1978). Astrophys. J., 222, 967-75.Google Scholar
Clement, M.J. (1979). Astrophys. J., 230, 230-42.CrossRefGoogle Scholar
Clement, M.J. (1986). Astrophys. J., 301, 185203.Google Scholar
Collins, G. W. II (1970). In Stellar Rotation, IAU Colloq. No. 4, ed. Slettebak, A., pp. 85108. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Collins, G. W. II (1986). In Physics of Be Stars, IAU Colloq. No. 92, ed. Slettebak, A. (this volume). Cambridge: Cambridge University Press.Google Scholar
Collins, G. W. II & Smith, R.C. (1985). Mon. Not. R. astr. Soc., 213, 519-52.Google Scholar
Deubner, F.-L. & Gough, D.O. (1984). Ann. Rev. Astron. Astrophys., 22, 593619.Google Scholar
Durisen, R.H. & Tohline, J.E. (1985). In Protostars and Planets II, eds Black, D.C. & Matthews, M.H., pp. 534-75. Tucson: University of Arizona Press.Google Scholar
Duvall, T.L. Jr, Dziembowski, W.A., Goode, P.R., Gough, D.O., Harvey, J.W. & Leibacher, J.W. (1984). Nature, 310, 22-5.Google Scholar
Duvall, T.L. Jr & Harvey, J.W. (1984). Nature, 310, 1922.Google Scholar
Dziembowski, W. (1984). Adv. Space Res., 4, 143-50.Google Scholar
Eddington, A.S. (1925). Observatory, 48, 73-5.Google Scholar
Eddington, A.S. (1929). Mon. Not. R. astr. Soc., 90, 54-8.Google Scholar
Eliassen, A. & Kleinschmidt, E. (1957). Handb. Phys., 48, 1154.Google Scholar
Eriguchi, Y. & Muller, E. (1985a). Astron. Astrophys., 146, 260-68.Google Scholar
Eriguchi, Y. & Muller, E. (1985b). Astron. Astrophys., 147, 161-68.Google Scholar
Frank, J. (1979). Mon. Not. R. astr. Soc., 187, 883904.Google Scholar
Fricke, K. (1967). Doctoral Dissertation, Goettingen.Google Scholar
Fricke, K. (1968). Z. Astrophys., 68, 317-44.Google Scholar
Fricke, K.J. & Kippenhahn, R. (1972). Ann. Rev. Astron. Astrophys., 10, 4572.Google Scholar
Fricke, K.J. & Smith, R.C. (1971). Astron. Astrophys., 15, 329-31.Google Scholar
Fujimoto, M.Y. (1986). Astron. Astrophys., submitted (Preprint MPA 246, Max-Planck-Institut für Physik und Astrophysik, Garching, July 1986).Google Scholar
Galilei, Galileo (1612). Letters on Sunspots. English translation by Drake, Stillman (1957) in Discoveries and Opinions of Galileo. New York: Doubleday Anchor Books.Google Scholar
Goldreich, P. & Schubert, G. (1967). Astrophys. J., 150, 571-87.Google Scholar
Gough, D.O. (1985). Nature, News and Views, 314, 14-5.Google Scholar
Gough, D.O. (1986). In Highlights of Astronomy, 7, ed. Swings, J.-P., pp. 283-93. Dordrecht: D. Reidel.Google Scholar
Gray, D.F. (1977). Astrophys. J., 211, 198206.Google Scholar
Gray, D.F. (1982). Astrophys. J., 258, 201-8.Google Scholar
Greenspan, H.P. (1968). The Theory of Rotating Fluids. Cambridge: Cambridge University Press.Google Scholar
Guenther, D.B. & Demarque, P. (1986). Astrophys. J., 301, 207-12.Google Scholar
Harris, W.E. & Clement, M.J. (1971). Astrophys. J., 167, 321-5.Google Scholar
Høiland, E. (1939). Archiv. Math. Naturvidensk., 46, Nr 5, 169.Google Scholar
James, R.A. (1964). Astrophys. J., 140, 552-82.Google Scholar
Kippenhahn, R. & Thomas, H.-C. (1970). In Stellar Rotation, IAU Colloq. No. 4, ed Slettebak, A., pp. 20-9. Dordrecht: D. Reidel.Google Scholar
Kippenhahn, R. & Thomas, H.-C. (1981). In Fundamental Problems in the Theory of Stellar Evolution, IAU Symp. No. 93, eds Lamb, D.Q., Schramm, D.N. & Sugimoto, D., pp. 237-56. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Knobloch, E. (1982). Geophys. Astrophys. Fluid Dynamics, 22, 133-58.Google Scholar
Knobloch, E. & Spruit, H.C. (1982). Astron. Astrophys., 113, 261-8.Google Scholar
Knobloch, E. & Spruit, H.C. (1983). Astron. Astrophys., 125, 5968.Google Scholar
Lebovitz, N.R. (1967). Ann. Rev. Astron. Astrophys., 5, 465-80.Google Scholar
Lebovitz, N.R. (1975). In Problems of Stellar Hydrodynamics, Liège Colloq. 19, Mem. Soc. R. Sciences Liège, 6e Série, 8, 4753.Google Scholar
Lebovitz, N.R. (1979). Ann. Rev. Fluid Mech., 11, 229-46.CrossRefGoogle Scholar
Libbrecht, K.G. (1986). Nature, 319, 753-5.Google Scholar
Marks, D.W. & Clement, M.J. (1971). Astrophys. J. Lett., 166, L27-9.Google Scholar
Mestel, L. (1965). In Stellar Structure, ed. Aller, L. & McLaughlin, D.B., pp. 465-97. Chicago: University of Chicago Press.Google Scholar
Mestel, L. & Weiss, N.O. (1986). Mon. Not. R. astr. Soc., submitted.Google Scholar
Milne, E.A. (1923). Mon. Not. R. astr. Soc., 83, 118-47.Google Scholar
Moss, D. & Smith, R.C. (1981). Rep. Prog. Phys., 44, 831-91.CrossRefGoogle Scholar
Müller, E. & Eriguchi, Y. (1985). Astron. Astrophys., 152, 325-35.Google Scholar
Ostriker, J.P. & Mark, J.W.-K. (1968). Astrophys. J., 151, 1075-88.CrossRefGoogle Scholar
Papaloizou, J. & Pringle, J.E. (1984). Mon. Not. R. astr. Soc., 208, 721-50.Google Scholar
Papaloizou, J. & Pringle, J.E. (1985). Mon. Not. R. astr. Soc., 213, 799820.Google Scholar
Papaloizou, J.C.B. & Whelan, J.A.J. (1973). Mon. Not. R. astr. Soc., 164, 110.Google Scholar
Peacock, T. & Smith, R.C. (1986). Observatory, submitted.Google Scholar
Randers, G. (1941). Astrophys. J., 94, 109-23.Google Scholar
Lord, Rayleigh (1920). Scientific Papers, 6, 447-53.Google Scholar
Roxburgh, I.W. (1966). Mon. Not. R. astr. Soc., 132, 201-15.CrossRefGoogle Scholar
Sackmann, I.-J. (1970). Astron. Astrophys., 8, 7684.Google Scholar
Sackmann, I.-J. & Anand, S.P.S. (1970). Astrophys. J., 162, 105-24.Google Scholar
Schlesinger, F. (1910). Publ. Allegheny Observatory, 1, 123-34.Google Scholar
Schwarzschild, M. (1958). Structure and Evolution of the Stars. Princeton: Princeton University Press.Google Scholar
Slettebak, A. (1976). In Be and Shell Stars, IAU Symp. No. 70, ed. Slettebak, A., pp. 123-36. Dordrecht: D. Reidel.Google Scholar
Smith, R.C. (1971a). Mon. Not. R. astr. Soc., 151, 463-83.Google Scholar
Smith, R.C. (1971b). Mon. Not. R. astr. Soc., 153, 33P35P.Google Scholar
Smith, R.C. & Fricke, K.J. (1975). Mon. Not. R. astr. Soc., 172, 577-84.Google Scholar
Solberg, H. (1936). Procès-Verbaux Ass. Mètèor., UGGI, Mem. et Disc, 2, 6682.Google Scholar
Spruit, H.C., Knobloch, E. & Roxburgh, I.W. (1983). Nature, 304, 520-2.Google Scholar
Spruit, H.C. & Knobloch, E. (1984). Astron. Astrophys., 132, 8996.Google Scholar
Stoeckley, T.R. (1968). Mon. Not. R. astr. Soc., 140, 121-39.Google Scholar
Stoeckley, T.R., Carroll, R.W. & Miller, R.D. (1984). Mon. Not. R. astr. Soc., 208, 459 and Microfiche MN208/1. Google Scholar
Stoeckley, T.R. & Buscombe, W. (1986). Mon. Not. R. astr. Soc., to appear.Google Scholar
Strittmatter, P.A. (1969). Ann. Rev. Astron. Astrophys., 7, 665-84.Google Scholar
Sweet, P.A. (1950). Mon. Not. R. astr. Soc., 110, 548-58.CrossRefGoogle Scholar
Tassoul, J.-L. (1978). Theory of Rotating Stars. Princeton: Princeton University Press.Google Scholar
Tayler, R.J. (1973). Mon. Not. R. astr. Soc., 165, 3952.Google Scholar
Tuominen, I.V. (1972). Ann. Acad. Sci. Fennicae, Sér. A, VI Physica, No. 392.Google Scholar
Turner, J.S. (1973). Buoyancy Effects in Fluids. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Vogt, H. (1925). Astron. Nachr., No. 5342, 223, 229-32.CrossRefGoogle Scholar
von Zeipel, H. (1924). Mon. Not. R. astr. Soc., 84, 665-83.Google Scholar
Wasiutynski, J. (1946). Astrophys. Norvegica, 4, 1497.Google Scholar
Zahn, J.-P. (1974). In Stellar Instability and Evolution, IAU Symp. No. 59, eds Ledoux, P., Noels, A. & Rodgers, A.W., pp. 185-95. Dordrecht: D. Reidel.Google Scholar
Zahn, J.-P. (1975). In Problems of Stellar Hydrodynamics, Liège Colloq. No. 19, Mem. Soc. R. Sci. Liège, 6e Sèr., 8, 31-4.Google Scholar
Zahn, J.-P. (1983). In Astrophysical Processes in Upper Main Sequence Stars, 13th Saas-Fee Advanced Course, eds. Maeder, A. & Hauck, B., pp. 255329. Sauverny: Geneva Observatory.Google Scholar
Zahn, J.-P. (1984). In Theoretical Problems in Stellar Stability and Oscillations, Liège Colloq. No. 25, eds. Noels, A. & Gabriel, M., pp. 407418. Cointe-Ougrée: Université de Liège.Google Scholar