Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T20:15:38.341Z Has data issue: false hasContentIssue false

Rotating Stellar Atmospheres (Review Paper)

Published online by Cambridge University Press:  23 September 2016

Joseph P. Cassinelli*
Affiliation:
Washburn Observatory, The University of Wisconsin, Madison

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of rapid rotation on the emergent energy distribution, line profiles, atmospheric motions and polarization are discussed. A simplified explanation of some of the effects is presented. Results of detailed radiation transfer calculations are briefly reviewed. The rotation can lead to circulation and turbulent motions in the photospheric layers which could affect the outflow from the Be stars. The rotation rates actually observed in the Be stars are sufficiently below the critical rate that many of the effects predicted by the plane parallel atmosphere calculations should be small. Nevertheless, the models are useful and necessary for estimating rotation speeds from lines that are widely separated in wavelength. The rapidly rotating photospheric models predict far too small an infrared excess, as well as too small an intrinsic polarization. The explanation of these observations requires that geometrically extended envelopes be considered. Theoretical models for the intrinsic polarization are critically discussed. It is stressed that polarization is a powerful diagnostic for determining the asymmetrical structure of the outer atmospheres of the Be stars.

Type
IIB. The Underlying Stars: Theory
Copyright
Copyright © Cambridge University Press 1987

References

Abbott, D.C. (1978). In IAU Sumposium 83, Mass Loss and Evolution of O-Type Stars, eds. Conti, P. S. and de Loore, C. W. H., p. 237. Dordrecht: Reidel.Google Scholar
Brown, J. C. and McLean, I. S. (1977). Astron. Astrophys., 57, 141.Google Scholar
Carpenter, K. G., Slettebak, A. and Sonneborn, G. (1984). Astrophys. J., 286, 741.CrossRefGoogle Scholar
Cassinelli, J. P., Nordsieck, K.H., and Murison, M.A. (1986). To appear in Astrophys. J.Google Scholar
Cassinelli, J. P. (1985). In The Origin of Nonradiative Heating/Momentum in Hot Stars, eds. Underhill, A.B. and Michalitsianos, A.G., p. 2. NASA Conf. Publ. 2358.Google Scholar
Cassinelli, J. P. and Haisch, B. M. (1974). Astrophys. J., 188, 101.Google Scholar
Chandrasekhar, S. (1950). Radiative Transfer. London: Oxford University Press.Google Scholar
Clayton, D. D. (1968). Principles of Stellar Evolution and Nucleosynthesis, p. 497. University of Chicago Press.Google Scholar
Collins, G. W. II (1963). Astrophys. J., 128, 1134.CrossRefGoogle Scholar
Collins, G. W. II (1970). In Stellar Rotation, ed. Slettebak, A., p. 85. Dordrecht: Reidel.Google Scholar
Collins, G. W. II (1974). Astrophys. J., 121, 157.Google Scholar
Collins, G. W. II, and Harrington, J.P. (1966). Ap. J., 146, 152.Google Scholar
Collins, G. W. II, and Smith, R. C. (1985). Mon. Not. Roy. Astr. Soc., 212, 519.Google Scholar
Collins, G. W. II, and Sonneborn, G. H. (1977). Astrophys. J. Suppl., 34, 41.Google Scholar
Hardorp, J., and Strittmatter, P. A. (1968). Astrophys. J., 151, 1057.Google Scholar
Harrington, J. P., and Collins, G. W. II (1978). Astrophys. J., 151, 1051.Google Scholar
Hartmann, L. (1978). Astrophys. J., 224, 520.Google Scholar
Hutchings, J. B., Nemec, J. M., and Cassidy, J. (1979). Publ. Astr. Soc. Pac., 91, 313.Google Scholar
Hutchings, J. B., and Stoeckley, T. R. (1977). Pub. Astr. Soc. Pac., 89, 19.Google Scholar
Lamers, H. J. G. L. M., Stalio, R., and Kondo, Y. (1978). Astrophys. J., 222, 207.Google Scholar
Lupie, O. L., and Nordsieck, K. H. (1986) to appear in Astrophys. J.Google Scholar
Maeder, A., and Peytremann, E. (1972). Astr. and Astrophys., 21, 279.Google Scholar
Marlborough, J. M. (1982). In IAU Symbposium 98, Be Stars, eds. Jaschek, M. and Groth, H.-G., p. 361. Dordrecht: Reidel.Google Scholar
Mc Lean, I. S., and Brown, J. C. (1978). Astron. and Astrophys., 69, 291.Google Scholar
Morton, D. C., Jenkins, E. B., Matilsky, T. A., and York, D. G. (1972). Astrophys. J., 177, 219.Google Scholar
Moss, D. L. and Smith, R. C. (1981). Rep. Prog. Phys., 44, 831.Google Scholar
Poeckert, R. and Marlborough, J. M. (1978). Astrophys. J. Suppl., 38, 229.Google Scholar
Sackmann, I. J., and Anand, S. P. S. (1970). Astrophys. J., 162, 105.CrossRefGoogle Scholar
Shajn, G. and Struve, O. (1929). Mon. Not. Roy. Astr. Soc., 89, 222.Google Scholar
Slettebak, A. (1949). Astrophys. J., 110, 498.Google Scholar
Slettebak, A. (1956). Astrophys. J., 124, 173.Google Scholar
Smith, R. C. (1970). Mon. Not. Roy. Astr. Soc., 148, 275.Google Scholar
Sonneborn, G. H. (1982). In IAU Symposium No. 98, Be Stars, eds. Jaschek, M. and Groth, H.-G., p. 493. Dordrecht: Reidel.Google Scholar
Sonneborn, G. H., and Collins, G. W. II (1977). Astrophys. J., 213, 787. WSTR-84.CrossRefGoogle Scholar
Thomas, R. N. (1983). In Stellar Atmospheric Structural Patterns. NASA SP-471.Google Scholar
Waters, L. B. F. M. (1986). To appear in Astron. Astrophys.Google Scholar