Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T12:07:26.027Z Has data issue: false hasContentIssue false

The Role of Eruption in Solar Flares

Published online by Cambridge University Press:  12 April 2016

Peter A. Sturrock*
Affiliation:
Center for Space Science and Astrophysics, Stanford University, Stanford, CA 94305, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article focuses on two problems involved in the development of models of solar flares. The first concerns the mechanism responsible for eruptions, such as erupting filaments or coronal mass ejections, that are sometimes involved in the flare process. The concept of ‘loss of equilibrium’ is considered and it is argued that the concept typically arises in thought-experiments that do not represent acceptable physical behavior of the solar atmosphere. It is proposed instead that such eruptions are probably caused by an instability of a plasma configuration. The instability may be purely MHD, or it may combine both MHD and resistive processes. The second problem concerns the mechanism of energy release of the impulsive (or gradual) phase. It is proposed that this phase of flares may be due to current interruption, as was originally proposed by Alfvén and Carlqvist. However, in order for this process to be viable, it seems necessary to change one's ideas about the heating and structure of the corona in ways that are outlined briefly.

Type
Research Article
Copyright
Copyright © Kluwer 1989

References

Alfvén, H. and Carlqvist, P.: 1967, Solar Phys. 1, 220.Google Scholar
Aly, J. J.: 1984, Astrophys. J. 283, 349.Google Scholar
Anzer, U. and Pneuman, G. W.: 1982, Solar Phys. 79, 129.Google Scholar
Bai, T.: 1986a, Adv. Space Res. 6, 203.Google Scholar
Bai, T.: 1986b, Astrophys. J. 308, 912.Google Scholar
Bai, T. and Sturrock, P. A., 1989, Ann. Rev. Astron. Astrophys. 27 (in press).CrossRefGoogle Scholar
Bernstein, I. B.: 1973a, in Rosenbluth, M. N. and Sagdeev, R. Z. (eds.), Handbook of Plasma Physics. Google Scholar
Bernstein, I. B.: 1973b, in Galeev, A. A. and Sudan, R. N. (eds.), Basic Plasma Physics I, p. 421.Google Scholar
Blake, M. L. and Sturrock, P. A.: 1985, Astrophys. J. 290, 359.Google Scholar
Birn, J., Goldstein, H., and Schindler, K.: 1978, Solar Phys. 57, 81.Google Scholar
Cliver, E. W., Dennis, B. R., Kiplinger, A. L., Kane, S. R., Neidig, D. F., Sheeley, N. R., and Koomen, M. J.: 1986, Astrophys. J. 305, 920.CrossRefGoogle Scholar
Kahler, S. W.: 1982,7. Geophys. Res. 87, 3439.Google Scholar
Kane, S. R., Chupp, E. L., Forrest, K. J., Share, G. H., and Rieger, E.: 1986, Astrophys. J. 300, L95.Google Scholar
Klimchuk, J. A. and Sturrock, P. A.: 1989, Astrophys. J. (in press).Google Scholar
Kopp, R. A. and Pneuman, G. W.: 1976, Solar Phys. 50, 85.Google Scholar
Krall, N. A. and Trivelpiece, A. W.: 1973, Principles of Plasma Physics, McGraw-Hill, New York, p. 475.Google Scholar
Low, B. C.: 1977a, Astrophys. J. 212, 234.CrossRefGoogle Scholar
Low, B. C.: 1977b, Astrophys. J. 217, 988.Google Scholar
Low, B. C.: 1980, Astrophys. J. 239, 377.CrossRefGoogle Scholar
Martin, S. F. and Ramsey, H. E.: 1972, in Mclntosh, P. S. and Dryer, M. (eds.), Solar Activity Observations and Predictions, MIT Press, Cambridge, p. 371.Google Scholar
Parker, E. N.: 1988, Astrophys. J. 330, 474.Google Scholar
Priest, E. R. and Milne, A. M.: 1980, Solar Phys. 65, 315.Google Scholar
Sturrock, P. A.: 1968, in Kiepenheuer, K. O. (ed.), ‘Structure and Development of Solar Active Regions', IAU Symp. 35, 471.Google Scholar
Sturrock, P. A.: 1987, Solar Phys. 113, 13.Google Scholar
Sturrock, P. A.: 1988, Outstanding Problems in Solar System Plasma Physics, AGU Monograph (in press).Google Scholar
Sturrock, P. A., Kaufmann, P., Moore, R. L., and Smith, D. F.: 1984, Solar Phys. 94, 341.Google Scholar
Yang, W.-H., Sturrock, P. A., and Antiochos, S. K.: 1986, Astrophys. J. 309, 383.Google Scholar