Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T00:54:18.614Z Has data issue: false hasContentIssue false

Review of the Dynamical Aspects of Triple Systems

Published online by Cambridge University Press:  12 April 2016

V. Szebehely*
Affiliation:
University of Texas at Austin

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A classification of possible motions of triple systems is presented emphasizing the transient phenomena occurring in addition to the final (asymptotic) outcome and clarifying the discrepancies between the astronomical and mathematical formulations. A conjectured possible instability is described and it is shown that systems with negative total energy and low angular momentum may lead to instability and to the formation of binaries. The ejected or escaping star may have high velocity if the triple close approach preceding the escape is sufficiently close. The computational results of several systematic series of such escapes are applied to various stellar configurations.

The present status of the fundamental problem of partitioning the phase-space into stable and unstable regions is reviewed and a recently developed technique, applicable to stellar dynamics is described. Recently discovered families of periodic orbits and previously established classical configurations are shown to weaken the general instability conjecture.

The possible existence of triple systems in states of dissolution offer intriguing observational challenges regarding the discovery of these projected temporary trapezium type systems.

Resumen

Resumen

Se presenta una clasificación de los posibles movimientos de un sistema triple, enfatizando los fenómenos transitorios que ocurren antes de la situación final asintiótica y aclarando la discrepancia entre las formulaciones astronómica y matemática. Se ha descrito la conjetura de una posible inestabilidad y se ha mostrado que los sistemas con energía total negativa y con momento angular bajo, pueden conducir a inestabilidad y a la formación de binarias. La estrella escapada o eyectada puede tener velocidad alta si el encuentro triple que precede al escape es suficientemente estrecho. Los resultados del cálculo de algunas series sistemáticas de tales escapes, se aplican a varias configuraciones estelares.

Se ha revisado el estado actual del problema fundamental de la división del espacio fase en regiones estables e inestables y se ha descrito una técnica recién desarrollada aplicable a sistemas estelares. Se señala que las familias de órbitas periódicas recién descubiertas y las configuraciones clásicas previamente establecidas debilitan la conjetura general de inestabilidad.

La posible existencia de sistemas triples en estado de disolución ofrece un intrigante reto observacional para su descubrimiento.

Type
Session 5
Copyright
Copyright © Otto G. Franz and Paris Pismis 1977

References

Agekian, T. A., and Martinova, A. I. 1973, Unin. of Leningrad Pub., No. 1, 122.Google Scholar
Allen, C., and Poveda, A. 1974 Proc. IAU Symposium No. 62, The Stability of the Solar System and of Small Stellar Systems ed. Kozai, Y. (Dordrecht: D. Reidel), 239.Google Scholar
Birkhoff, G. D. 1927, Dynamical Systems (Providence, R. I.: Am. Math. Soc. Pub.).CrossRefGoogle Scholar
Bozis, G., and Christides, Th. 1975, Celes. Mech., 12, 277.Google Scholar
Broucke, R. 1975, private communication.Google Scholar
Chazy, J. 1918, Bull Astron., 35, 311.Google Scholar
Chazy, J. 1929, J. Math. Pure Appl, 8, 353.Google Scholar
Dunham, J. 1975, private communication.Google Scholar
Gingerich, O. J. 1975, private communication.Google Scholar
Hadjidemetriou, J. 1975a, Celes. Mech., 12, 255.CrossRefGoogle Scholar
Hadjidemetriou, J. 1975b, Celes. Mech., 12, 155.Google Scholar
Harrington, R. S. 1968, A.J., 73, 190.CrossRefGoogle Scholar
Harrington, R. S. 1975, Celes. Mech., in press.Google Scholar
Hénon, M. 1974, Celes. Mech., 10, 375.Google Scholar
Marchal, C. 1976, Long-Time Predictions in Dynamics, eds. Szebehely, V. and Tapley, B. (Dordrecht: D. Reidel), 181.CrossRefGoogle Scholar
Marchai, C., and Saari, D. 1975, Celes. Mech., 12, 115.Google Scholar
Standish, E. M. 1970, in Periodic Orbits and Stability, ed. Giacaglia, G.E.O., (Dordrecht: D. Reidel), 375.CrossRefGoogle Scholar
Sundman, K. F. 1912, Acta Math., 36, 105.Google Scholar
Szebehely, V. 1971, Celes. Mech., 4, 116.Google Scholar
Szebehely, V. 1974, A. J., 74, 9811449.CrossRefGoogle Scholar
Szebehely, V., and Peters, F. 1967, A. J., 72, 1187.CrossRefGoogle Scholar
Szebehely, V., and Zare, K. 1976, Bull. AAS, 8, 436.Google Scholar
Whittaker, E. T. 1904, Analytical Dynamics, (London and New York: Cambridge Univ. Press).Google Scholar
Zare, K, 1976, Dissertation, University of Texas at Austin.Google Scholar