Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T19:42:08.688Z Has data issue: false hasContentIssue false

Relativistic Particle Acceleration in Plerions

Published online by Cambridge University Press:  12 April 2016

Jonathan Arons
Affiliation:
University of California
Marco Tavani
Affiliation:
Physics Department, Princeton University

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is either pure electrons and positrons or primarily electrons and positrons with an admixture of heavy ions. Particle-in-cell simulation techniques as well as analytic theory have been used to show that such shocks in pure pair plasmas are fully thermalized—the downstream particle spectra are relativistic Maxwellians at the temperature expected from the jump conditions. On the other hand, shocks containing heavy ions which are a minority constituent by number but which carry most of the energy density in the upstream medium do put ~20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) ∝ E−2, where N(E)dE is the number of particles with energy between E and E + dE.

The mechanism of thermalization and particle acceleration is found to be synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front. The synchrotron maser modes radiated by the heavy ions are absorbed by the pairs at their (relativistic) cyclotron frequencies, allowing the maximum energy achievable by the pairs to be γ±m±c2 = mic2γ1/Zi, where γ1 is the Lorentz factor of the upstream flow and Zi, is the atomic number of the ions. The shock’s spatial structure is shown to contain a series of “overshoots” in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value.

This shock model is applied to an interpretation of the structure of the inner regions of the Crab Nebula, in particular to the “wisps,” surface brightness enhancements near the pulsar. We argue that these surface brightness enhancements are the regions of magnetic overshoot, which appear brighter because the small Larmor radius pairs are compressed and radiate more efficiently in the regions of more intense magnetic field. This interpretation suggests that the structure of the shock terminating the pulsar’s wind in the Crab Nebula is spatially resolved, and allows one to measure γ1, and a number of other properties of the pulsar’s wind. We also discuss applications of the shock theory to the termination shocks of the winds from rotation-powered pulsars embedded in compact binaries. We show that this model adequately accounts for (and indeed predicted) the recently discovered X-ray flux from PSR 1957+20, and we discuss several other applications to other examples of these systems.

Subject headings: acceleration of particles — ISM: individual (Crab Nebula) — relativity — shock waves

Type
Pulsars, Supernovae, and Supernova Remnants
Copyright
Copyright © The American Astronomical Society 1994

References

Alsop, D., & Arons, J. 1988, Phys. Fluids, 31, 839 CrossRefGoogle Scholar
Arons, J. 1983, in Proc. Workshop on Electron-Positron Pairs in Astrophysics, ed. Burns, M.L., Harding, A.K., & Ramaty, R. (New York: AIP), 163 Google Scholar
Arons, J., & Tavani, M. 1993, ApJ, 403, 249 CrossRefGoogle Scholar
Aschenbach, B., & Brinkmann, W. 1975, A & A, 41, 147 Google Scholar
Begelman, M.C., & Kirk, J.G. 1990, ApJ, 353, 66 CrossRefGoogle Scholar
Begelman, M.C., & Li, Z.-Y. 1992, ApJ, 397, 187 CrossRefGoogle Scholar
Begelman, M.C., & Li, Z.-Y. 1993, ApJ, submittedGoogle Scholar
Bell, A.R. 1978, MNRAS, 182, 147 CrossRefGoogle Scholar
Birdsall, C.K., & Langdon, A.B. 1985, Plasma Physics via Computer Simulation (New York: McGraw-Hill)Google Scholar
Chiueh, T. 1989, Phys. Rev. Lett., 63, 113 CrossRefGoogle Scholar
de Jager, O.C., & Harding, A.K. 1992, ApJ, 396, 161 CrossRefGoogle Scholar
Ellison, D.C., Jones, F.C., & Reynolds, S.P. 1990, ApJ, 360, 702 CrossRefGoogle Scholar
Emmering, R.T., & Chevalier, R.A. 1987, ApJ, 321, 334 CrossRefGoogle Scholar
Fruchter, A.S., Stinebrung, D.R., & Taylor, J.H. 1988, Nature, 333, 237 CrossRefGoogle Scholar
Gallant, Y.A., & Arons, J. 1993, ApJ, submittedGoogle Scholar
Gallant, Y.A., Arons, J., & Langdon, A.B. 1993, in Physics of Isolated Pulsars, ed. van Riper, K., Epstein, R., & Ho, C. (Cambridge: Cambridge Univ. Press), in pressGoogle Scholar
Gallant, Y.A., Hoshino, M., Langdon, A.B., Arons, J., & Max, C.E. 1992, ApJ, 391, 73 CrossRefGoogle Scholar
Hoshino, M., & Arons, J. 1991, Phys. Fluids B, 3, 818 CrossRefGoogle Scholar
Hoshino, M., Arons, J., Gallant, Y.A., & Langdon, A.B. 1992, ApJ, 390, 454 CrossRefGoogle Scholar
Johnston, S., Manchester, R.N., Lyne, A.G., Bailes, M., Kaspi, V.M., Guojun, Q., & D’Amico, N. 1992, ApJ, 387, L37 CrossRefGoogle Scholar
Jokipii, J.R. 1987, ApJ, 313, 842 CrossRefGoogle Scholar
Jones, T.W., & Hardee, P.E. 1979, ApJ, 228, 268 CrossRefGoogle Scholar
Kennel, C.F., & Coroniti, F.V. 1984a, ApJ, 283, 694 CrossRefGoogle Scholar
Kennel, C.F., & Coroniti, F.V. 1984b, ApJ, 283, 710 CrossRefGoogle Scholar
Kennel, C.F., & Pellat, R. 1976, J. Plasma Phys., 15, 335 CrossRefGoogle Scholar
Kluzniak, W., Ruderman, M.A., Shaham, J., & Tavani, M. 1988, Nature, 334, 225 CrossRefGoogle Scholar
Kulkarni, S.R., & Hester, J.J. 1988, Nature, 335, 801 CrossRefGoogle Scholar
Kulkarni, S.R., Phinney, E.S., Evans, C.R., & Hasinger, G. 1992, Nature, 359, 300 CrossRefGoogle Scholar
Kundt, W., & Krotscheck, E. 1980, A & A, 83, 1 Google Scholar
Langdon, A.B., Arons, J., & Max, C.E. 1988, Phys. Rev. Lett., 61, 779 CrossRefGoogle Scholar
Langdon, A.B., & Lasinski, B.F. 1976, Meth. Comput. Phys., 16, 327 Google Scholar
Pacini, F. 1967, Nature, 216, 567 CrossRefGoogle Scholar
Pelling, R.M., Paciesas, W.S., Peterson, L.E., Makashima, K., Oda, M., Ogawara, Y., & Miyamoto, S. 1987, ApJ, 319, 416 CrossRefGoogle Scholar
Phinney, E.S., Evans, C.R., Blandford, R.D., & Kulkarni, S.R. 1988, Nature, 333, 832 CrossRefGoogle Scholar
Piddington, J.H. 1957, Aust. J. Phys., 10, 530 CrossRefGoogle Scholar
Quenby, J.R., & Lieu, R. 1989, Nature, 342, 654 CrossRefGoogle Scholar
Rees, M.J., & Gunn, J.E. 1974, MNRAS, 167, 1 CrossRefGoogle Scholar
Ruderman, M.A., Shaham, J., & Tavani, M. 1989, ApJ, 336, 507 CrossRefGoogle Scholar
Scargle, J.D. 1969, ApJ, 156, 401 CrossRefGoogle Scholar
van den Bergh, S., & Pritchet, C.J. 1989, ApJ, 343, L69 CrossRefGoogle Scholar
Wagner, S., Sanchez-Pons, F., Quirrenbach, A., & Witzel, A. 1990, A & A, 235, Ll Google Scholar
Yang, T.-Y. B., Gallant, Y.A., Arons, J., & Langdon, A.B. 1993a, in Physics of Isolated Pulsars, ed. van Riper, K., Epstein, R., & Ho, C. (Cambridge: Cambridge Univ. Press), in pressGoogle Scholar
Yang, T.-Y. B., Gallant, Y.A., Arons, J., & Langdon, A.B. 1993b, Phys. Fluids, in pressGoogle Scholar
Yoon, P. 1990, Phys. Fluids B, 3, 867 CrossRefGoogle Scholar
Zhelznyakov, V.V., & Suvorov, E.V. 1972, Ap & SS, 15, 24 CrossRefGoogle Scholar