Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T12:31:36.712Z Has data issue: false hasContentIssue false

Radio, Millimeter and Infrared Observations of the Local Hot Bubble and Its Environment

Published online by Cambridge University Press:  12 April 2016

Ulrich Mebold
Affiliation:
Radioastronomisches Institut der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany
Jürgen Kerp
Affiliation:
Radioastronomisches Institut der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany
Peter M.W. Kalberla
Affiliation:
Radioastronomisches Institut der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a definition of the local void of neutral gas from observations in the radio frequency window. We question the concept of the Local Bubble in sense of a more or less spherical volume which is surrounded by a shell of denser gas. The concept of the Local Bubble is challenged by the discovery of numerous neutral, dense clouds inside the local void. The search for a “shell” around the suspected Bubble has resulted only in inconclusive findings so far. The sample of high latitude molecular clouds illustrates the situation particularly well. The statistical properties of their spatial distribution, e.g. the mean distance, seem to fit very nicely to the spatial extent of the Local Bubble. But a more detailed investigation shows that the concept of a bubble – in particular an expanding bubble – is not supported. We suggest that the local void is nothing more than a typical place in an interarm region of our Galaxy.

Finally, a discussion of the high latitude boundary of the local void does not give strong evidence for the concept of a bubble, that has once been in rapid expansion and is still showing signs of interaction with its environment. However, indications for interactions of IVCs or HVCs with their surroundings are found. These hint at the presence of a gaseous disk which is much more vertically extended than previously believed, or at a Galactic wind which may be blowing from the Galactic neighbourhood of the Sun.

Type
Part IV Clouds, Ionized Gas, and Particles in the Local ISM
Copyright
Copyright © Springer-Verlag 1998

References

Benjamin, R.A. (1997): “The Physics of Galactic Halos” eds. Lesch, et al., Akademie-Verlag, p. 33 Google Scholar
Benjamin, R.A., Venn, K.A., Hiltgen, D.D., Sneden, C. (1996): ApJ 464, 836 Google Scholar
Bowyer, C.S., Field, G.B. & Mack, J.E. (1968): Nat 217, 32 Google Scholar
Dickey, J. & Lockman, F.J. (1990): ARAA 28, 215 Google Scholar
Falgarone, E. & Lequeux, J., (1973): A&A 25, 253 Google Scholar
Frisch, P.C. &, York, D.G. (1983): ApJ 271, L49 Google Scholar
Hartmann, Dap & Burton, W.B. (1997): “Atlas of Galactic Neutral Hydrogen”, Cambridge University Press Google Scholar
Herbstmeier, T.J., Heithausen, A. & Mebold, U. (1993): A&A 272, 514 Google Scholar
Herbstmeier, U. et al. (1995): A&A 298, 606 Google Scholar
Herbstmeier, U. et al. (1996): A&AS 117, 497 Google Scholar
Hirth, W., Mebold, U., Dahlem, M. & Müller, P. (1991), Ap&SS 186, 211 Google Scholar
Jacobsen, P. & Kahn, S.M. (1986): ApJ 309, 682 CrossRefGoogle Scholar
Kahn, F. (1989): “Structure and Dynamics of the Interstellar Medium”, eds. Tenorio-Tagle, et al. Proc. IAU Coll. No. 120, 474 Google Scholar
Kalberla, P.M.W. (1997): “The Physics of Galactic Halos” eds. Lesch, et al., Akademie-Verlag, p. 3 Google Scholar
Kerp, J. et al. (1996): A&A 312, 67 Google Scholar
Kuntz, K.D. & Danly, L. (1996): ApJ 457, 703 Google Scholar
Lilienthal, D., Hirth, W., Mebold, U. & de Boer, K.S. (1992): A&A 255, 323 Google Scholar
Lilienthal, D., Wennmacher, A., Herbstmeier, U. & Mebold, U. (1991): A&A 250, 150 Google Scholar
Magnani, L., Hartmann Dap, & Speck, B.G. (1996): ApJS 106, 447 Google Scholar
McCammon, D. & Sanders, W.T. (1990): ARAA 28, 657 Google Scholar
McCammon, D., Burrows, D.N., Sanders, W.T. & Kraushaar, W.L. (1983): ApJ 269, 170 Google Scholar
Mebold, U. (1972): A&A 19, 13 Google Scholar
Mebold, U. et al. (1985): A&A 151, 427 Google Scholar
Meyerdierks, H. (1992): A&A 253, 515 Google Scholar
Moritz, P. et al. (1997): A&A, submittedGoogle Scholar
Penprase, B.E. (1997): in preparationGoogle Scholar
Pietz, J. et al. (1996), A&A 308, L37 Google Scholar
Reynolds, R.J. (1991): IAU Symp. 144, “The disk-halo connection” ed. Bloemen, H., p. 67 Google Scholar
Snowden, S.L., Cox, D.P., McCammon, D. & Sanders, W.T. (1990): ApJ 354, 211 Google Scholar
Snowden, S.L., Mebold, U., Hirth, W., Herbstmeier, U. & Schmitt, J.H.M.M. (1991): Sci 252, 1529 Google Scholar
Tenorio-Tagle, G. & Bodenheimer, P. (1988): ARAA 26, 145 Google Scholar
Wakker, B.P. (1990): Ph.D. thesis, University of Groningen Google Scholar
Wakker, B.P. & Boulanger, F. (1986): A&A 170, 84 Google Scholar
Wakker, B.P. et al. (1996): ApJ 473, 834 Google Scholar
Weiss, A. (1997): Diplomarbeit Universität BonnGoogle Scholar
Wennmacher, A. (1994): Ph.D. thesis University of BonnGoogle Scholar
Wesselius, P.R. & Fejes, I. (1973): A&A 24, 15 Google Scholar
Westphalen, et al. (1997): “The Physics of Galactic Halos” eds. Lesch, et al., Akademie-Verlag, p. 3 Google Scholar
Wolfire, M.G., Hollenbach, D., McKee, C.F., Tielens, A.G.G.M. & Bakes, E.L.O.(1995): ApJ 443, 152 CrossRefGoogle Scholar