Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T10:29:25.041Z Has data issue: false hasContentIssue false

Population I Stellar Structure and Evolution: facing the lingering difficulties to make a step forward

Published online by Cambridge University Press:  12 April 2016

André Maeder*
Affiliation:
Geneva Observatory, CH-1290 Sauverny, Switzerland

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The understanding of stellar structure, evolution and pulsations is a key piece of the proper understanding of the Universe. The interpretation of the luminosity and spectra of galaxies, the properties of star populations and of starbursts, the calibration of distances, the nucleosynthetic prescriptions etc... are all requiring good models of stellar structure and evolution. The many interesting and new results in the field have been presented in several recent reviews by Maeder (1991), Chiosi et al. (1992), Maeder & Conti (1994). Table 1 below presents a list of the recent grids of stellar models. The various columns give the author’s name, then the mass range, the metallicity Z range, the kind of convective assumption adopted, where “Schw.” means Schwarzschild’s criterion, “oversh” means with convective overshooting, “all” means that different assumptions have been used. In the last column, a few remarks are given. It is interesting to note that the models mentioned above often arrive to very different conclusions about the kind of mixing supported by the observations. Authors of models with overshooting generally conclude that overshooting is best supported, authors of models without overshooting favour the absence of overshooting, while authors who consider various convective assumptions generally favour semiconvection (Stothers & Chin 1991; Mowlawi & Forestini 1994).

Type
Part 1. The Scientific Programme
Copyright
Copyright © Astronomical Society of the Pacific 1995

References

Alongi, M., Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F., et al. 1993, A&AS, 97, 851 Google Scholar
Arnett, D. 1991, ApJ, 383, 295 Google Scholar
Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F., & Nasi, E. 1994, A&AS, 106, 275 Google Scholar
Brocato, E., & Castellani, V. 1993, ApJ, 410, 99 Google Scholar
Bracato, E., Castellani, V., & Piersimoni, A.M. 1994, A&A, 290, 59 Google Scholar
Charbonnel, C. 1994, A&A, 282, 811 Google Scholar
Chiosi, C., Bertelli, G., & Bressan, A. 1992, ARA&A, 30, 235 Google Scholar
Chiosi, C., Nasi, E., & Sreenivasan, S.R. 1978, A&A, 63, 103 Google Scholar
Claret, A., & Gimenez, A. 1992, A&AS, 96, 255 Google Scholar
Conti, P., & Massey, P. 1989, ApJ, 337, 251 Google Scholar
Fitzpatrick, E.L., & Bohannan, B. 1993, ApJ, 404, 734 CrossRefGoogle Scholar
Fitzpatrick, E.L., & Garmany, C.D. 1990, ApJ, 363, 119 CrossRefGoogle Scholar
Fransson, C., Cassatella, A., Gilmozzi, R., Kirshner, R.P., Panagia, N., et al. 1989, ApJ, 336, 429 Google Scholar
Gies, D.R., & Lambert, D.L. 1992, ApJ, 387, 673 Google Scholar
Gilroy, K.K., & Brown, J.A. 1991, ApJ, 371, 578 CrossRefGoogle Scholar
Herrero, A., Kudritzki, R.P., Vilchez, J.M., Kunze, D., Butler, K., & Haser, S. 1992, A&A, 261, 209 Google Scholar
Howarth, I.D., & Prinja, R.K. 1989, ApJS, 69, 527 Google Scholar
Humphreys, R.M., & McElroy, D.B. 1984, ApJ, 284, 565 CrossRefGoogle Scholar
Iben, I., & Tuggle, R.S. 1975, ApJ, 197, 39 CrossRefGoogle Scholar
Kudritzki, R.P., Hummer, D.G., Pauldrach, A.W.A., Puls, J., Najarro, F., & >Imhoff, J. 1992, A&A, 257, 655 Imhoff,+J.+1992,+A&A,+257,+655>Google Scholar
Lamers, H.J.G.L.M., & Leitherer, C. 1993, ApJ, 412, 771 Google Scholar
Langer, N. 1991, A&A, 248, 531 Google Scholar
Langer, N., & Maeder, A. 1995, A&A, in pressGoogle Scholar
Lattanzio, J.C. 1991, ApJS, 76, 215 CrossRefGoogle Scholar
Lattanzio, J.C., Vallenari, A., Bertelli, G., & Chiosi, G. 1991, A&A, 250, 340 Google Scholar
Lennon, D.J. 1994, Space Sci. Rev., 66, 127 Google Scholar
Luck, R.E., & Lambert, D.L. 1985, ApJ, 298, 782 CrossRefGoogle Scholar
Maeder, A. 1987, A&A, 178, 159 Google Scholar
Maeder, A. 1991, QJRAS, 32, 217 Google Scholar
Maeder, A. 1995, A&A, in pressGoogle Scholar
Maeder, A., & Conti, P. 1994, ARA&A, 32, 227 Google Scholar
Maeder, A., & Meynet, G. 1989, A&A, 210, 155 Google Scholar
Maeder, A., & Meynet, G. 1994, A&A, 287, 803 Google Scholar
Meylan, G., & Maeder, A. 1982, A&A, 108, 148 Google Scholar
Meynet, G., Maeder, A., Schaller, G., Schaerer, D., & Charbonnel, C. 1994, A&A, 281, 638 Google Scholar
Meynet, G., Mermilliod, J.C., & Maeder, A. 1993, A&AS, 98, 477 Google Scholar
Mowlawi, N., & Forestini, M. 1994, A&A, 282, 843 Google Scholar
Nasi, E., & Forieri, C. 1990, Ap&SS, 166, 229 Google Scholar
Schaerer, D. 1995, Thesis, Univ. Geneva Google Scholar
Schaller, G., Schaerer, D., Meynet, G., & Maeder, A. 1992, A&AS, 96, 269 Google Scholar
Stothers, R.B., & Chin, C.W. 1977, ApJ, 211, 189 Google Scholar
Stothers, R.B., & Chin, C.W. 1991, ApJ, 374, 288 Google Scholar
Stothers, R.B., & Chin, C.W. 1992, ApJ, 390, 136 Google Scholar
Sweigart, A.V., Greggio, L., & Renzini, A. 1989, ApJS, 229, 624 Google Scholar
Tassoul, J.L. 1978, Theory of rotating stars, Princeton Series in Astroph., p. 3 Google Scholar
Tuchman, J., & Wheeler, J.C. 1989, ApJ, 344, 835 Google Scholar
Tuchman, J., & Wheeler, J.C. 1990, ApJ, 363, 255 Google Scholar
VandenBerg, Don, A. 1992, ApJ, 391, 685 Google Scholar
van Genderen, A.M. 1978, A&A, 65, 147 Google Scholar
Vassiliadis, E., & Wood, P.R. 1993, ApJ, 413, 641 Google Scholar
Venn, K.A. 1993, ApJ, 414, 316 Google Scholar
Walborn, N.R. 1976, ApJ, 205, 419 Google Scholar
Walborn, N.R. 1988, in Atmospheric Diagnostics of Stellar Evolution, IAU Coll. 108, Ed. Nomoto, K., Springer Verlag, Berlin, p. 70 Google Scholar
Zahn, J.P. 1992, A&A, 265, 115 Google Scholar
Zahn, J.P. 1994, Space Sci. Rev., 66, 285 Google Scholar