Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T22:11:37.521Z Has data issue: false hasContentIssue false

Physical Processes in Active Galactic Nuclei

Published online by Cambridge University Press:  12 April 2016

Roland Svensson*
Affiliation:
NORDITA, Blegdamsvej 17 DK-2100 Copenhagen Ø, Denmark

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Active galactic nuclei (AGNs) emit continuum radiation evenly spread over up to ten decades in frequency from the radio into the gamma-ray range. Plausible emission mechanisms and their characteristics are reviewed. In the deep potential wells around black holes the mean energy per proton can reach 100 MeV. Part or all of this energy may be channeled to all electrons equally (thermal plasma) or, preferentially, into only a small fraction of the electrons (nonthermal plasma). In the former case thermal Comptonization of soft photons may be the dominant emission mechanism, while in the latter case the synchrotron and the inverse Compton scattering process (synchro-self-Compton) are likely to dominate.

When the compactness parameter L (hν≈mc2 )/R. (power L, radius R) exceeds about 1030 ergs cm−1s−1 or L>Lc ≡ 1030R ergs s−1, then electron-positron pair production takes place due to photon-photon interactions causing the source to shroud itself with an electron-positron atmosphere. The efficiency of pair cascades in converting injected energy into electron-positron rest mass can reach levels of about 10% in static pair atmospheres. The emerging radiation is strongly modified by the pair atmosphere causing the spectrum to soften and to have characteristic breaks.

For emission coming from a region near the Schwarzschild radius, L>10-3LEdd is sufficient to cause prolific pair production. Radiation pressure then drives a mildly relativistic pair wind with Compton drag limiting the Lorentz factor to be less then 10. The pair rest mass power is at most of the order of Lc.

Most results so far on static pair atmospheres and pair winds are either qualitative or based on simple analytical models. Needed numerical treatments of both time dependent and steady radiative transfer of both the continuum and the annihilation line radiation in mildly relativistic flows are relevant not only for AGNs but also for gamma ray bursts and galactic black hole sources.

Type
7. Active Galactic Nuclei
Copyright
Copyright © Springer-Verlag 1986

References

1. Begelman, M.C., Blandford, R.D., and Rees, M.J.: Rev. Mod. Phys., 56, 255 (1984)Google Scholar
2. Rees, M.J., Ann. Rev. Astr. Ap.: 22, 471 (1984) .Google Scholar
3. Phinney, E.S.: Ph.D.thesis, University of Cambridge (1983).Google Scholar
4. Svensson, R.: in X-ray and UV Emission from Active Galactic Nuclei edited by Trůmper, J. and Brinkman, W. (Max-Planck, Garching, 1984)p. 152.Google Scholar
5. Petre, R., Mushotzky, R.F., Krolik, J.H., and Holt, S.S.: Astroph. J., 280, 499 (1984).Google Scholar
6. Rothschild, R.E. et al.: Astroph. J., 269, 423 (1983).Google Scholar
7. Elvis, M., Wilkes, B.J., and Tananbaum, H.: Astroph. J., 292, 357.Google Scholar
8. Elvis, M, : Center for Astroph. Preprint No.2126 (1985).Google Scholar
9. Perotti, F. et al.: Nature, 292, 133 (1981).Google Scholar
10. Perotti, F. et al.: Astroph. J. Lett., 247, L63 (1981).Google Scholar
11. Bezler, M. et al.: Astron. Astr., 136, 351 (1984).Google Scholar
12. Tennant, A.F., and Mushotzky, R.F.: Astroph. J.,264, 92 (1983).Google Scholar
13. Zamorani, G., Gioitimi, P., Maccacaro, T., and Tananbaum, H.: Astroph. J., 278, 28 (1984).Google Scholar
14. Bassani, L., and Dean, A.J.: Nature, 294, 332 (1981).CrossRefGoogle Scholar
15. Rybicki, G.B., and Lightraan, A.P. Radiative Processes in Astrophysics (Wiley Interscience, New York,1979).Google Scholar
16. Dermer, C.D.: preprint (1985).Google Scholar
17. Guilbert, P.W., Fabian, A.C., and Rees, M.J.: M.N.R.A.S., 205, 593 (1983).CrossRefGoogle Scholar
18. Sunyaev, R.A., and Titarchuk, L.G.: Astron. Astr., 86, 121 (1980).Google Scholar
19. Fransson, C.: AStron. Astr., 111, 140 (1982) .Google Scholar
20. Pozdnyakov, L.A., Sobol’, I.M., and Sunyaev, R.A.: Soviet Scientific Review, Section E2, (Harwood, London, 1983), p.l89.Google Scholar
21. Zdziarski, A.A.: Astroph. J., 289, 514 (1985).Google Scholar
22. Górecki, A., and Wilczewski, W.: Acta Astr., 34, 141 (1984).Google Scholar
23. Guilbert, P.W.: M.N.R.A.S., 197, 451 (1981).Google Scholar
24. Zdziarski, A.A.: Astroph. J., in press(1986).Google Scholar
25. Jelley, J.V.: Nature, 211, 472 (1966).Google Scholar
26. Herterich, K.: Nature, 250, 311 (1974).Google Scholar
27. Zdziarski, A.A.: Acta Astr., 30, 371 (1980).Google Scholar
28. Ramaty, R., and Mészaros, P.: Astroph. J. 250, 384 (1981).CrossRefGoogle Scholar
29. Svensson, R.: Astroph. J., 258, 321 (1982).Google Scholar
30. Svensson, R.: Astroph. J., 270, 300 (1983).Google Scholar
31. Dermer, C.D.: Astroph. J., 280, 328 (1984).Google Scholar
32. Weaver, T.A.: Phys. Rev., A13, 1563(1976).Google Scholar
33. Lightman, A.P., and Band, D.L.: Astroph. J., 251, 713 (1981).Google Scholar
34. Gould, R.J.: Astroph. J., 254, 755 (1982).Google Scholar
35. Svensson, R.: Astroph. J., 258, 335 (1982).Google Scholar
36. Svensson, R.: M.R.A.S., 209, 175 (1984 ).CrossRefGoogle Scholar
37. Stepney, S., and Guilbert, P.W.: M.N.R.A.S., 204, 1269 (1983).Google Scholar
38. Stepney, S.: M.N.R.A.S., 202, 467 (1983).Google Scholar
39. Dermer, C.D.: Astroph. J., 295, 28 (1985).Google Scholar
40. Bisnovatyi-Kogan, G.S., Zeldovich, Ya.B., and Sunyaev, R.A.: Sov. Astr., 15, 17 (1971).Google Scholar
41. Lightman, A.P.: Astroph. J., 253, 842 (1982).Google Scholar
42. Araki, S., and Lightman, A.P.: Astroph. J., 269, 49 (1983).Google Scholar
43. Kusunose, M., and Takahara, F.: Proqr. Theor. Phys., 69, 1443(1983).Google Scholar
44. Kusunose, M., and Takahara, F.: Progr. Theor. Phys., 73, 41 (1985).Google Scholar
45. Zdziarski, A.A.: Astroph. J., 283, 842 (1984).Google Scholar
46. Zdziarski, A.A.: Astroph. J., in press(1986).Google Scholar
47. Guilbert, P.W., and Stepney, S.: M.R.A.S., 212, 523 (1985).CrossRefGoogle Scholar
48. Schultz, A.L., and Price, R.H.: Astroph. J., 291, 1 (1985).Google Scholar
49. Sikora, M., and Zbyszewska, M.: M.N.R.A.S., 212, 553 (1985).Google Scholar
50. Takahara, F., and Kusunose, M.: Progr. Theor. Phys., 73, 1390 (1985).Google Scholar
51. Moskalik, P., and Sikora, M.,: preprint (1985).Google Scholar
52. Bonometto, S., and Rees, M.J.: M.N.R.A.S., 152, 21 (1971).CrossRefGoogle Scholar
53. Aharonian, F.a., Kirillov-Ugryumov, V.G. and Vardanian, V.V. preprint (1983).Google Scholar
54. Stern, B.E.: preprint(1984).Google Scholar
55. Fabian, A.C.: in X-ray and UV Emission from Active Galactic Nuclei edited by Trumper, J. and Brinkman, W. (MaxPlanck, Garching, 1984) p. 232.Google Scholar
56. Kazanas, D.: Astroph. J., 287, 112 (1984).Google Scholar
57. Zdziarski, A.A., and Lightman, A.P.: Astroph. J. Lett., 294, L79 (1985).Google Scholar
58. Svensson, R.: preprint(1985).Google Scholar
59. Burns, M.L., and Lovelace, R.V.E.: Astroph. J., 262, 87 (1982).Google Scholar
60. Carrigan, B.J., and Katz, J.I.: preprint(1985).Google Scholar
61. Crannell, C.J., Joyce, G., Ramaty, R., and Werntz, C.: Astroph. J., 210, 582 (1976).Google Scholar
62. Ore, A., and Powell, J.L.: Phys. Rev., 75,1696 (1949).Google Scholar
63. Noerdlinger, P.D.: Astroph. J., 192, 529 (1974).Google Scholar
64. Kovner, I.: Astr. Astroph., 141, 341 (1984)Google Scholar