Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:02:10.933Z Has data issue: false hasContentIssue false

Particles in Jupiter's atmosphere from the impacts of Comet P/Shoemaker-Levy 9

Published online by Cambridge University Press:  02 August 2016

Robert A. West*
Affiliation:
Jet Propulsion Lab, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dark clouds that were easily seen in small telescopes after the comet impacts were caused by small particles which were deposited in Jupiter's stratosphere. Observations from the Hubble Space Telescope and from ground-based instruments at visible and infrared wavelengths indicate that the mean radius of the particles is in the range 0.1 to 0.3 μm, and the total volume of particles is approximately the same as that for a 1-km diameter sphere. In the dark core regions of freshly-formed impacts, the particles are distributed over a large vertical extent, between about 1 mb and 200 mb or deeper. The diffuse outlying haze is confined to the high-altitude end of the range. Such a distribution probably reflects different methods of emplacement of the debris as a function of distance from the impact. The color of the particles, and their volatility as required to make waves visible, suggest an organic material as the main constituent. These relatively volatile materials are thought to have condensed onto more refractory grains after the plume material cooled, some 30 minutes or more after impact. The most refractory materials expected to condense from an evolving fireball are Al2O3, magnesium and iron silicates, and soot, depending on the C/O ratio. A silicate spectral feature was observed, confirming that cometary material was incorporated into the grains, although silicate grains make up only 10-20% of the particle volume. After one year in Jupiter's stratosphere, the particles have spread some 20° in latitude and a significant number have sedimented into the troposphere where they are no longer visible.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Anders, E. 1971 Meteorites and the early solar system. Ann. Rev. Astron. Astrophys. 9, (eds. Goldberg, L., Layzer, D., & Phillips, J.), pp. 134. Ann. Reviews, Inc. Google Scholar
Atreya, S. K., Edgington, S G., Trafton, L. M., Caldwell, J. J., Noll, K. S., & Weaver, H. A. 1995 Abundances of ammonia and carbon-disulfide in the jovian stratosphere following the impact of comet Shoemaker Levy 9. Geophys. Res. Lett. 22, 16251628.Google Scholar
Baines, K. H., West, R. A., Giver, L. P., & Moreno, F. 1993 Quasi-random narrowband model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients. J. Geophys. Res. 98, 55175529.Google Scholar
Baines, K. H., et al. 1994 The effect of SL9 on Jupiter's vertical aerosol structure: Results from IRTF near-infrared imaging Bull. Amer. Astron. Soc. 26, 1591.Google Scholar
Banfield, D., Gierasch, P., Squyres, S., Nicholson, P., Conrath, B., & Matthews, K. 1995 2μm spectrophotometry of jovian stratospheric aerosols—scattering opacities, vertical distributions and wind speeds, submitted for publication (Icarus). Google Scholar
Bjoraker, D., Stolovy, S. R., Herter, T. L., Gull, G. E., & Pirger, B. E. 1995 Detection of water after the collision of fragments G and K of comet Shoemaker-Levy 9 with Jupiter, submitted for publication (Icarus). Google Scholar
Clarke, J., et al. 1995 HST far-ultraviolet imaging of Jupiter during the impacts of comet Shoemaker-Levy 9. Science 267, 13021307.Google Scholar
Conrath, B. J., Gierasch, P. J., & Leroy, S. S. 1990 Temperature and circulation in the stratosphere of the outer planets. Icarus 83, 255281.Google Scholar
Tabulated Optical Properties of Graphite and Silicate Grains 1985 Astrophys. J. Supp. Ser. 57, 587594.Google Scholar
Field, G. B. 1995 Dust at the SL9 impact sites. In Abstracts for IAU Colloquium 156: The collision of Comet P/Shoemaker-Levy 9 and Jupiter. Google Scholar
Field, G. B., Tozzi, G. P., & Stanga, R. M. 1995 Dust as the cause of spots on Jupiter. Astron. and Astropys. Lett. 294, L53L55.Google Scholar
Friedson, A. J. 1995 Refractory grain formation in Shoemaker-Levy 9 fireballs, submitted for publication (Icarus). Google Scholar
Gierasch, P. J., B. J., , & Magalhães, J. A. 1986 Zonal mean properties of Jupiter's upper troposphere from Voyager infrared observations. Icarus 67, 456483.Google Scholar
Gustavsen, R. L. 1986 Ph.D. Thesis, Washington State University Google Scholar
Hammel, H. B., et al. 1995 HST Imaging of atmospheric phenomena created by the impact of comet Shoemaker-Levy 9. Science 267, 12881296.CrossRefGoogle ScholarPubMed
Ingersoll, A. P. & Kanamori, H. 1995 Waves from the collisions of comet Shoemaker-Levy 9 with Jupiter. Nature 374, 706708.Google Scholar
Khare, G. N., Sagan, C., Reid, , Thompson, W. R., Arakawa, E. T., Meisse, C. & Tu-Minello, P. S. 1994 Optical properties of poly-HCN and their astronomical applications. Canadian J. Chem. 72, 678694.Google Scholar
Mallama, A., Nelson, P., & Park, J. 1995 Detection of very high altitude fall-out from the comet Shoemaker-Levy 9 explosions in Jupiter's atmosphere. J. Geophys. Res. 100, 16,879-16,884.Google Scholar
Marten, A., et al. 1995 The collision of comet Shoemaker-Levy 9 with Jupiter: Detection and evolution of HCN in the stratosphere of the planet. Geophys. Res. Lett. 22, 15891592.CrossRefGoogle Scholar
Meadows, V. & Crisp, D. 1995 Impact plume composition from near-infrared spectroscopy. In Proceedings of the European SL-9/Jupiter Workshop (eds. West, R. and Böhnhardt, H.), pp. 239244. European Southern Observatory.Google Scholar
Moreno, F., Muñoz, O., Molina, A., López-Moreno, J. J., Ortiz, J. L., Rodríguez, J., López-Jiménez, A., Girela, F., Larson, S. M., & Campins, H. 1995 Physical properties of the aerosol debris generated by the impact of fragment-H of comet-P Shoemaker-Levy 9 on Jupiter. Geophys. Res. Lett. 22, 16091612.CrossRefGoogle Scholar
Moses, J. L., Allen, M., & Gladstone, G. R. 1995 Post-SL9 sulfur photochemistry on Jupiter. Geophys. Res. Lett. 22, 15971600.Google Scholar
Nicholson, P. D., Gierasch, P. J., Hayward, T. L., McGhee, C. A., Moersch, J. E., Squyres, S. W., Van Cleve, J., Matthews, K., Neugebauer, G., Shupe, D., Weinberger, A., Miles, J. W., & Conrath, B. J. 1995 Palomar observations of the R impact of comet Shoemaker Levy 9. 2. Spectra. Geophys. Res. Lett. 22, 16171620.Google Scholar
Noll, K. S., McGrath, M. A., Trafton, L. M., Atreya, S. K., Caldwell, J. J., Weaver, H. A., Yelle, R. V., Barnet, C., & Edgington, S. 1995 HST spectroscopicobservations of Jupiter after the collision of comet Shoemaker-Levy 9. Science 267, 13071313.Google Scholar
Ortiz, J. L., Muñoz, O., Moreno, F., Molina, A., Herbest, T. M., Birkle, K., Böhnhardt, H., & Hamilton, D. P. 1995 Models of the SL-9 collision-generated hazes. Geophys. Res. Lett. 22, 16051608.Google Scholar
Orton, G. et al. 1995a Collision of comet Shoemaker Levy 9 with Jupiter observed by the NASA Infrared Telescope Facility. Science 267, 12771282.Google Scholar
Orton, G. et al. 1995b Some Results from the NASA Infrared Telescope Facility Shoemaker-Levy 9 observing campaign. In Proceedings of the European SL-9/Jupiter Workshop (eds. West, R. and Böhnhardt, H.), pp. 123128. European Southern Observatory.Google Scholar
Roosserote, M., Barucci, A., Crovisier, J., Drossart, P., Fulchignoni, M., Lecacheux, J., & Roques, F. 1995 Metallic emission lines during the impacts L and Q1 of comet P Shoemaker Levy 9 in Jupiter. Geophys. Res. Lett. 22, 16211624.Google Scholar
Rosenqvist, J., Biraud, Y. G., Cuisenier, M., Marten, A., Hidayat, T., Chountonov, G., Moreau, D., Muller, C., Maslov, I., Ackerman, M., Balega, Y., & Korablev, O. 1995 Four micron infrared observations of the comet Shoemaker-Levy 9 collision with Jupiter at the Zelenchuk Observatory: Spectral evidence for a stratospheric haze and determination of its physical properties. Geophys. Res. Lett. 22, 15851588.Google Scholar
Sasson, R., Wright, R., Arakawa, E. T., Khare, B. N. & Sagan, C. 1985 Optical properties of solid and liquid sulfur at visible and infrared wavelengths. Icarus 64, 368374.Google Scholar
West, R. A. 1991 Optical properties of aggregate particles whose outer diameter is comparable to the wavelength. Appl. Optics 30, 53165324.Google Scholar
West, R. A. & Smith, P. H. 1991 Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus 90, 330333.Google Scholar
West, R. A., Friedson, A. J., & Appleby, J. F. 1992 Jovian large-scale stratospheric circulation. Icarus 100, 245259.Google Scholar
West, R. A., Karkoschka, E., Friedson, A. J., Seymour, M., Baines, K. H., & Hammel, H. B. 1995 Impact debris particles in Jupiter stratosphere. Science 267, 12961301.Google Scholar
Wickramasinghe, N. C. & Wallis, M. K. 1994 Submicron dust and the collision of comet SL-9 with Jupiter. Astrophys. and Space Sci. 219, 295301.Google Scholar
Wilson, P. D., & Sagan, C. 1995 Chemistry of the Shoemaker-Levy 9 jovian impact blemishes: Indigenous cometary vs. shock-synthesized organic matter. In The collision of comet P/Shoemaker-Levy 9 and Jupiter (eds. Noll, K. et al.) Cambridge.Google Scholar
Zahnle, K., Maclow, M. M., Lodders, K., & Fegley, B. 1995 Sulfur chemistry in the wake of comet Shoemaker Levy 9. Geophys. Res. Lett. 22, 15931596.Google Scholar