Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T20:58:20.199Z Has data issue: false hasContentIssue false

On the Primordial Condensation and Accretion Environment and the Remanent Magnetization of Meteorites

Published online by Cambridge University Press:  12 April 2016

Aviva Brecher*
Affiliation:
University of California, San Diego La Jolla, California

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Attention is drawn to the fact that neither astronomical observations, nor laboratory data can, as yet, sufficiently constrain models of the origin and evolution of the solar system. But, if correctly approached and interpreted, the magnetic remanence of meteorites could help in constructing a self-consistent model.

In the context of various models for the early evolution of a solar nebula, the possible roles assigned to ambient magnetic fields and the paleointensities required to establish the stable natural remanent magnetization (NRM in range 10-4 to 10-1 cgsm) observed in meteorites, are discussed. It is suggested that the record of paleofields present during condensation, growth, and accumulation of grains is likely to have been preserved as chemical (CRM) or thermochemical (TCRM) remanence in unaltered meteoritic material. This interpretation of the meteoritic NRM is made plausible by experimental and theoretical results from the contiguous fields of rock magnetism, magnetic materials, interstellar grains, etc. Several arguments (such as the anisotropy of susceptibility in chondrites, suggesting alignment of elongated ferromagnetic grains, or the characteristic sizes and morphology of carrier phases of remanence, etc.) as well as general evidence from meteoritics (cooling rates, chemical and mineralogical data) can be used to challenge the interpretation of NRM as thermo-remanence (TRM) acquired on a “planetary” parent body during cooling of magnetic mineral phases through the Curie point in fields of 0.2 to 0.9 Oe.

Fine-particle theories appear adequate for treating meteoritic remanence, if models based on corresponding types of permanent magnet materials, e.g., powder-ferrites for chondrites; diffusion hardened alloys for iron meteorites, are adopted, as suggested here.

Finally, a potentially fruitful sequence of experiments is suggested for separating the useful component of NRM in determining the paleofield intensity and its time evolution.

Type
Research Article
Copyright
Copyright © NASA 1971

References

Alfvén, H., 1954. On the Origin of the Solar System, Oxford Univ. Press, London.Google Scholar
Alfvén, H., and Arrhenius, G., 1970. Structure and evolutionary history of the solar system, Astrophys. Space Sci., 1, 186271; 2, 282312.Google Scholar
Anders, E., 1971a. Meteorites and the early solar system, Annual Rev. Astron. Astrophys., 9, 134.CrossRefGoogle Scholar
Anders, E., 1971b. Interrelations of meteorites, asteroids and comets, in Physical Studies of Minor Planets, edited by Gehrels, T., NASA SP-267, Supt. of Documents, U.S. Govt. Printing Office, Washington, 429446.Google Scholar
Arrheniu, G., and Alfvén, H., 1971. Fractionation and condensation in space, Earth Planet. Sci. Lett., 10, 253267.CrossRefGoogle Scholar
Banerjee, S. K., 1970. Rockmagnetism today, J. Appl. Phys., 41, 966973.CrossRefGoogle Scholar
Banerjee, S. K., and Hargraves, R. B., 1971. Natural remanent magnetization of carbonaceous chondrites, Earth Planet. Sci. Lett., 10, 392396.CrossRefGoogle Scholar
Blander, M., and Abdel-Gawad, M., 1969. The origin of meteorites and the constrained equilibrium condensation theory, Geochim. Cosmochim. Acta, 33, 701716.CrossRefGoogle Scholar
Blander, M., and Katz, J. L., 1967. Condensation of primordial dust, Geochim. Cosmochim. Acta, 31, 10251034 CrossRefGoogle Scholar
Bozorth, R. M., 1951. Ferromagnetism, Van Nostrand, New York.Google Scholar
Brown, W. F. JR., 1960. Single domain particles: New uses of old theorems, Amer. J. Phys., 28, 542551.CrossRefGoogle Scholar
Buseck, P. R., and Goldstein, J. I., 1964. Pallasitic meteorites: Implications regarding the deep structure of asteroids, Science, 159, 300302.CrossRefGoogle Scholar
Cameron, A. G. W., 1963. Contraction of the Sun toward the main sequence, in Origin of the Solar System, edited by Jastrow, R. and Cameron, A. G. W., Academic Press, New York, 5561.CrossRefGoogle Scholar
Cameron, A. G. W., 1966. The accumulation of chondritic material, Earth Planet. Sci. Lett., 1, 9396.CrossRefGoogle Scholar
Cameron, A. G. W., 1969 Physical conditions in the primitive solar nebula, in Meteorite Research, edited by Millman, P. M., D. Reidel Publ. Co., Dordrecht, Holland, 715.CrossRefGoogle Scholar
Cameron, A. G. W., 1973. The early evolution of the solar system, this volume.Google Scholar
Chatelain, A., Kline, D., Kolopus, J. L., and Weeks, R. A., 1970. Electron and nuclear magnetic resonance of three chondrite meteorites, J. Geophys. Res., 75, 56815692.CrossRefGoogle Scholar
Doell, R. R., Gromme, C. S., Thorpe, A. N., and Senftle, F. E., 1970. Magnetic studies of Apollo 11 lunar samples. Proc. Apollo 11 Lunar Science Conf., Geochim. Cosmochim. Acta, Suppl. 1, 20972102.Google Scholar
Doell, R. R., and Smith, P. J., 1969. On the use of magnetic cleaning in paleointensity studies, J. Geomagn. Geoelec, 21, 579594.CrossRefGoogle Scholar
Donn, B., and Sears, G. W., 1963. Planets and comets: Role of crystal growth in their formation, Science, 140, 12081211.CrossRefGoogle ScholarPubMed
Dunlop, D. J., and West, G. F., 1969. An experimental evaluation of single domain theories, Rev. Geophys., 7, 709757.CrossRefGoogle Scholar
Eberhardt, T. P., Geiss, J., and Grögler, N., 1965. Further evidence on the origin of trapped gases in the meteorite Khor Temiki, J. Geophys. Res., 70, 43754378.CrossRefGoogle Scholar
Evans, M. E., and Wayman, M. L., 1971. An investigation of small magnetic particles by means of electron microscopy, Earth Planet. Sci. Lett., 9, 365370.CrossRefGoogle Scholar
Everitt, C. W. F., 1961. Thermoremanent magnetization. I. Experiments on single domain grains, Phil. Mag., 6, 713726.CrossRefGoogle Scholar
Fricker, P. E., Goldstein, J. I., and Summers, A. L., 1970. Cooling rates and thermal histories of iron and stony-iron meteorites, Geochim. Cosmochim. Acta, 34, 475491.CrossRefGoogle Scholar
Gillett, F. C., Stein, W. A., and Solomon, P. M., 1970. The spectrum of VY Canis Majoris from 2.9 to 14 microns, Astrophys. J., 160, L173L176.CrossRefGoogle Scholar
Gilman, R. C., 1969. On the composition of circumstellar grains, Astrophys. J., 155, L185L187.CrossRefGoogle Scholar
Goldstein, J. I., 1969. The classification of iron meteorites, in Meteorite Research, edited by Millman, P. M., D. Reidel Publ. Co., Dordrecht, Holland, 721737.CrossRefGoogle Scholar
Green, H. W., Radclipfe, S. V., and Heuer, A. H., 1971. Allende meteorite: A high-voltage electron petrographie study, Science, 172, 936939.CrossRefGoogle Scholar
Greenberg, J. M., 1967. Small particles in space, in The Zodiacal Light and the Interplanetary Medium, edited by Weinberg, J. L., NASA SP-150, Supt. of Documents, U.S. Govt. Printing Office, Washington, 215223.Google Scholar
Greenberg, J. M., 1968. Interstellar grains, in Stars and Stellar Systems, vol. VII, edited by Middlehurst, B. M. and Kuiper, G. P., Univ. Chicago Press, 221364.Google Scholar
Greenberg, J. M., 1970. Models of the zodiacal light, Space Research X, 225232.Google Scholar
Guskova, E. G., 1963. Investigation of natural remanent magnetization of stony meteorites, Geomagnetizm i Aeronomiya, 3, 308312.Google Scholar
Guskova, E. G., and Pochtarev, V. I., 1967. Magnetic fields in space according to a study of the magnetic properties of meteorites, Geomagnetizm i Aeronomiya, 7, 310316 (Geomagn. and Aeronom., 7, 245250).Google Scholar
Guskova, E. G., and Pochtarev, V. I., 1969. Magnetic properties of meteorites of the Soviet collection (in Russian), in Meteorite Research, edited by Millman, P. M., D. Reidel Publ. Co., Dordrecht, Holland, 633637.CrossRefGoogle Scholar
Hackwell, J. A., Gehrtz, R. D., and Woolf, N. J., 1970. Interstellar silicate absorption bands, Nature, 227, 822823.CrossRefGoogle ScholarPubMed
Haiqh, G., 1958. The process of magnetization by chemical change, Phil. Mag., 3, 267286.CrossRefGoogle Scholar
Hargraves, R. B., and Perkins, W. E., 1969. Investigations of the effect of shock on natural remanent magnetism, J. Geophys. Res., 74, 25762589.CrossRefGoogle Scholar
Harper, D. A., and Low, F. J., 1971. Far-infrared emission from H II regions, Astrophys. J., 165, L9L13.CrossRefGoogle Scholar
Harris, P. G., and Tozer, D. C., 1967. Fractionation of iron in the solar system, Nature, 215, 14491451.CrossRefGoogle Scholar
Herbig, G. H., 1970. VY Canis Majoris II. Interpretation of the energy distribution, Astrophys. J., 162, 557570.CrossRefGoogle Scholar
Hoyle, F., 1963. Formation of the planets, in Origin of the Solar System, edited by Jastrow, R. and Cameron, A. G. W., Academic Press, New York, 6371.CrossRefGoogle Scholar
Hoyle, F., and Wickramasinghe, N. C., 1968. Condensation of the planets, Nature, 217, 415418.CrossRefGoogle Scholar
Irving, E., 1964. Paleomagnetism and Its Application to Geological and Geophysical Problems, J. Wiley and Sons, New York.Google Scholar
Jain, A. V., and Lipschutz, M. E., 1969. Shock histories of hexahedrites and Ga-Ge Group III octahedrites, in Meteorite Research, edited by Millman, P. M., D. Reidel Publ. Co., Dordrecht, Holland, 826837.CrossRefGoogle Scholar
Jefpery, P. M., and Anders, E., 1970. Origin of primordial noble gases in separated meteoritic minerals, I, Geochim. Cosmochim. Acta, 34, 11751198.CrossRefGoogle Scholar
Jokipii, J. R., 1964. The distribution of gases in the protoplanetary nebula, Icarus, 3, 248252.CrossRefGoogle Scholar
Jones, R. V., and Spitzer, L. JR., 1967. Magnetic alignment of interstellar grains, Astrophys. J., 147, 943964.CrossRefGoogle Scholar
Kellogg, K., Larson, E. E., and Watson, D. E., 1970. Thermochemical remanent magnetization and thermal remanent magnetization : Comparison in a basalt, Science, 170, 628630.CrossRefGoogle Scholar
Kern, J. W., 1961a. Effects of moderate stresses on directions of thermoremanent magnetization, J. Geophys. Res., 66, 38013805.CrossRefGoogle Scholar
Kern, J. W., 1961b. The effect of stress on susceptibility and magnetization of a partially magnetized multidomain system, J. Geophys. Res., 66, 38073816.CrossRefGoogle Scholar
Kern, J. W., 1961c. Stress stability of remanent magnetization, J. Geophys. Res., 66, 38173820.CrossRefGoogle Scholar
Kerridge, J. F., 1967. The mineralogy and genesis of the carbonaceous meteorites, in Mantles of the Earth and Terrestrial Planets, edited by Runcorn, S. K., Interscience, London, 5456.Google Scholar
Kerridge, J. F., 1970. Some observations on the nature of magnetite in the Orgueil meteorite, Earth Planet. Sci. Lett., 9, 299306.CrossRefGoogle Scholar
Kimoto, K., Kamiya, Y., Nonoyama, M., and Uyeda, R., 1963. An electron microscope study of fine metal particles prepared by evaporation in argon gas at low pressure, Japan. J. Appl. Phys., 2, 702713.CrossRefGoogle Scholar
Kimoto, K., and Nishida, I., 1967. An electron microscope and electron diffraction study of fine smoke particles prepared by evaporation in argon gas at low pressures (II), Japan. J. Appl. Phys., 6, 10471059.CrossRefGoogle Scholar
Kneller, E., 1969. Fine particle theory, in Magnetism and Metallurgy, vol. 1, edited by Berkowitz, A. E. and Kneller, E., Academic Press, London, 366464.Google Scholar
Kobayashi, K., 1959. Chemical remanent magnetization of ferromagnetic minerals and its application to rock magnetism, J. Geomag. Geoelec, 10, 99117.CrossRefGoogle Scholar
Kobayashi, K., and Fuller, M., 1968. Stable remanence and memory of multi-domain materials, with special reference to magnetite, Phil. Mag., 18, 601624.CrossRefGoogle Scholar
Krishna Swamy, K. S., and Donn, B., 1968. An analysis of the infrared continuum of comets, Astrophys. J., 153, 291300.CrossRefGoogle Scholar
Kuhi, L. V., 1964. Mass loss from T Tauri stars, Astrophys. J., 140, 14091433.CrossRefGoogle Scholar
Lal, D., and Rajan, R. S., 1969. Observations on space irradiation of individual crystals of gas-rich meteorites, Nature, 223, 269271.CrossRefGoogle Scholar
Larimer, J. W., 1970. Chemical fractionation in meteorites III. Major element fractionations in chondrites, Geochim. Cosmochim. Acta, 34, 367387.CrossRefGoogle Scholar
Larimer, J. W., and Anders, E., 1967. Chemical fractionation in meteorites—II. Abundance patterns and their interpretation, Geochim. Cosmochim. Acta, 31, 12391270.CrossRefGoogle Scholar
Lefevre, J., 1970. An experimental study of the dust of iron, carbon, silicon carbide and silica, Astron. Astrophys., 5, 3744.Google Scholar
Lehnert, B., 1970. On the conditions for cosmic grain formation, Cosmic Electrodynamics, 1, 218232.Google Scholar
Levin, B. JR., 1969. Origin of meteorites and planetary cosmogony, in Meteorite Research, edited by Millman, P. M., D. Reidel Publ. Co., Dordrecht, Holland, 1630.CrossRefGoogle Scholar
Liller, W., 1960. The nature of the grains in the tails of the comets 1956h and 1957d, Astrophys. J., 132, 867882.CrossRefGoogle Scholar
Lord, H. C., 1969. Possible solar primordial hydrogen in the Pesyanoe meteorite, Earth Planet. Sci. Lett, 6, 332334.CrossRefGoogle Scholar
Low, F. J., Johnson, H. L., Kleinmann, D. E., Latham, A. S., and Geisel, S. L., 1970. Photometric and spectroscopic observations of infrared stars, Astrophys. J., 160, 531543.CrossRefGoogle Scholar
Low, F. J., and Smith, B. J., 1966. Infrared observations of a pre-planetary system, Nature, 212, 675676.CrossRefGoogle Scholar
Maas, R. W., Ney, E. P., and Woolf, N. J., 1970. The 10μ emission peak of comet Bennett 1969, Astrophys. J., 160, L101L104.CrossRefGoogle Scholar
Macqueen, R. M., 1968. Infrared observations of the outer solar corona, Astrophys. J., 154, 10591076.CrossRefGoogle Scholar
Marshall, M., and Cox, A., 1971. Effect of oxidation on the natural remanent magnetization of titano-magnetite in suboeeanic basalt, Nature, 230, 2831.CrossRefGoogle Scholar
Maurain, M. CH., 1901. Propriétés des dépots électrolytiques de fer obtenus dans un champ magnétique, J. Phys. Radium, 10, 123135.Google Scholar
Mccord, T. E., Adams, J. B., and Johnson, T. V., 1970. Asteroid Vesta: Spectral reflectivity and compositional implications, Science, 168, 14451447.CrossRefGoogle ScholarPubMed
Merrill, R. T., 1970. Low temperature treatments of magnetite and magnetite-bearing rocks, J. Geophys. Res., 75, 33433349.CrossRefGoogle Scholar
Meyer, CH. JR., 1971. An experimental approach to circumstellar condensation, Geochim. Cosmochim. Acta, 35, 551566.CrossRefGoogle Scholar
Nagata, T., Ishikawa, Y., Kinoshita, H., Kono, M., Syono, Y., and Fisher, R. M., 1970. Magnetic properties of lunar crystalline rock and fines, Science, 167, 703704.CrossRefGoogle ScholarPubMed
Nagata, T., Yama-Ai, M., and Akimoto, S., 1961. Memory of initial remanent magnetization and number of repeating heat-treatments in low-temperature behavior of haematite, Nature, 190, 620621.CrossRefGoogle Scholar
Opik, E. J., 1968. The cometary origin of meteorites, Irish Astron. J., 8, 185208.Google Scholar
Ozima, M., Ozima, M., and Akimoto, S., 1964. Low temperature characteristics of remanent magnetization of magnetite-self-reversal and recovery phenomena of remanent magnetization, J. Geomagn. Geoelec, 16, 165177.CrossRefGoogle Scholar
Pellas, P., Poupeau, G., Lorin, J. C., Reeves, H., and Audouze, J., 1969. Primitive low-energy particle irradiation of meteoritic crystals, Nature, 223, 272275.CrossRefGoogle Scholar
Pochtarev, V. I., 1967. Magnetic field of planets according to a study of the magnetic properties of meteorites, Geomagnetizm i Aeronomiya, 7, 745747 (Geomagn. and Aeronom., 7, 609610).Google Scholar
Pochtarev, V. I., and Guskova, E. G., 1962. The magnetic properties of meteorites, Geomagnetizm i Aeronomiya, 2, 749758 (Oeomagn. and Aeronom., 2, 626634).Google Scholar
Powell, B. N., 1969. Petrology and chemistry on mesosiderites. I. Texture and composition of nickel iron, Geochim. Cosmochim. Acta, 33, 789810.CrossRefGoogle Scholar
Purcell, E. M., 1969. On the alignment of interstellar dust, Physica, 41, 100127.CrossRefGoogle Scholar
Schwabtz, E. J., 1969. A discussion of thermal and alternating field demagnetization methods in the estimation of paleomagnetic field intensities, J. Geomagn. Geoelec, 21, 669677.Google Scholar
Schwartz, E. J., and Symons, D. T. A., 1970. Paleomagnetic field intensity during cooling of the Sudbury Irruptive 1700 my ago, J. Geophys. Res., 75, 66316640.CrossRefGoogle Scholar
Schwartz, K., and Schubert, G., 1969. The early despinning of the Sun, Astrophys. Space Sci., 5, 444447.CrossRefGoogle Scholar
Senftle, F. E., Thorpe, A. N., and Lewis, R. R., 1964. Magnetic properties of Ni-Fe spherules in tektites from Isabela, Philippine Islands, J. Geophys. Res., 69, 317324.CrossRefGoogle Scholar
Sonett, C. P., 1971. The relationship of meteoritic parent body thermal histories and electromagnetic heating by a pre-main sequence T-Tauri sun, in Physical Studies of Minor Planets, edited by Gehrels, T., NASA SP-267, Supt. of Documents, U.S. Govt. Printing Office, Washington, 239246.Google Scholar
Sonett, C. P., Colburn, D. S., Schwartz, K., and Keil, K., 1970. The melting of asteroidalsized bodies by unipolar dynamo induction from a primordial T-Tauri sun, Astrophys. Space Sci., 7, 446488.CrossRefGoogle Scholar
Spitzer, L. JR., 1963. Star formation, in Origin of the Solar System, edited by Jastrow, R. and Cameron, A. G. W., Academic Press, New York, 3953.CrossRefGoogle Scholar
Spitzer, L. JR., and Tukey, J. W., 1949. Interstellar polarization, galactic magnetic fields and ferromagnetism, Science, 109, 461462.CrossRefGoogle ScholarPubMed
Stacey, F. D., 1960a. Magnetic anisotropy of igneous rocks, J. Geophys. Res., 65, 24292442.CrossRefGoogle Scholar
Stacey, F. D., 1960b. Magnetic anisotropy of dispersed powders, Australian J. Phys., 13, 196201.CrossRefGoogle Scholar
Stacey, F. D., and Lovering, J. F., 1959. Natural magnetic moments of two chondritic meteorites, Nature, 183, 529530.CrossRefGoogle Scholar
Stacey, F. D., Lovering, J. F., and Parry, L. G., 1961. Thermomagnetic properties, natural magnetic moments and magnetic anisotropies of some chondritic meteorites, J. Geophys. Res., 66, 15231534.CrossRefGoogle Scholar
Stott, P. M., and Stacey, F. D., 1960. Magnetostriction and paleomagnetism of igneous rocks, J. Geophys. Res., 65, 24192424.CrossRefGoogle Scholar
Strangway, D. W., Larson, E. E., and Goldstein, M., 1968. A possible cause of high magnetic stability in volcanic rocks, J. Geophys. Res., 73, 37873795.CrossRefGoogle Scholar
Strangway, D. W., Larson, E. E., and Pearce, G. W., 1970. Magnetic properties of lunar samples, Science, 167, 691693.CrossRefGoogle ScholarPubMed
Strom, K. M., Strom, S. E., and Yost, J., 1971. Circumstellar shells in the young cluster NGC 2264, Astrophys. J., 165, 479488.CrossRefGoogle Scholar
Sutherland, D. N., 1970. Chain formation of fine particle aggregates, Nature, 226, 12411242.CrossRefGoogle ScholarPubMed
Tanaka, T., and Tamagawa, N., 1967. Magnetic properties of Fe-Co alloy fine particles, Japan. J. Appl. Phys., 6, 10961100.CrossRefGoogle Scholar
Thorpe, A. N., and Senptle, F. E., 1964. Submicroscopic spherules and color of tektites, Geochim. Cosmochim. Acta, 28, 981994.CrossRefGoogle Scholar
Verhoogen, J., 1959. The origin of thermoremanent magnetization, J. Geophys. Res., 64, 24412449.CrossRefGoogle Scholar
Weaving, B., 1961. Magnetic anisotropy in chondritic meteorites, Geochim. Cosmochim. Acta, 26, 451455.CrossRefGoogle Scholar
Weaving, B., 1962. The magnetic properties of the Brewster meteorite, Geophys. J., 7, 203211.CrossRefGoogle Scholar
Wetherill, G. W., 1971. Cometary vs asteroidal origin of chondritic meteorites, in Physical Studies of Minor Planets, edited by Gehrels, T., NASA SP-267, Supt. of Documents, U.S. Govt. Printing Office, Washington, 447460.Google Scholar
Whipple, F. L., 1966. A suggestion as to the origin of chondrules, Science, 153, 5456.CrossRefGoogle Scholar
Wickramasinghe, N. C., and Nandy, K., 1970. Interstellar extinction by graphite, iron and silicate grains, Nature, 227, 5153.CrossRefGoogle ScholarPubMed
Wood, J. A., 1962. Chondrules and the origin of terrestrial planets, Nature, 194, 127130.CrossRefGoogle Scholar
Wood, J. A., 1967. Chondrites : Their metallic minerals, thermal histories and parent planets, Icarus, 6, 149.CrossRefGoogle Scholar
Woolf, N. J., Stein, W. A., and Strittmatter, P. A., 1970. Infrared emission from Be stars, Astron. Astrophys., 9, 252258.Google Scholar